Browse > Article
http://dx.doi.org/10.7740/kjcs.2013.58.1.050

Optimization of SELDI-TOF MS for Peptide Profiling of Sorghum Seed  

Park, Sei Joon (Institute of Ecological Phytochemistry, Hankyong National University)
Park, June Young (Department of Plant Life and Environmental Science, Hankyong National University)
Lee, Yong Ho (Institute of Ecological Phytochemistry, Hankyong National University)
Hwang, Su Min (Department of Plant Life and Environmental Science, Hankyong National University)
Kim, A Ram (Department of Plant Life and Environmental Science, Hankyong National University)
Ko, Jee-Yeon (Department of Functional Crop, NICS, RDA)
Kim, Tae Wan (Institute of Ecological Phytochemistry, Hankyong National University)
Publication Information
KOREAN JOURNAL OF CROP SCIENCE / v.58, no.1, 2013 , pp. 50-56 More about this Journal
Abstract
For accurate analysis of low molecular peptides using SELDI-TOF MS (surface enhanced laser desorption/ionization time of flight mass spectrometry), the optimized analytical conditions should be established for a specific biological sample. This study was conducted to optimize SELDI-TOF MS analytical conditions for profiling low molecular peptide below 10 kDa presented in sorghum seeds. Analytical conditions were as follows; (1) protein chips: CM10 (weak cation exchanger) and Q10 (strong anion exchanger), (2) dilution factors of binding buffer: 1/2, 1/5, 1/10, 1/20, 1/50, 1/100, and 1/200, (3) the stringency of Q10 binding buffer: 10 mM and 100 mM, and (4) protein extraction buffers: sodium borate, sodium borate + acetone, phenol, and TCA buffers. Optimum dilution factors were selected as 1/20 and 1/50 in both protein chips, CM10 and Q10. Low stringency of Q10 binding buffer (10mM) detected more peptide peaks than high stringency (100 mM). Selected protein extraction buffers of sorghum seed for SELDI-TOF MS analysis was the sodium borate buffer in the range of 2~10 kDa, while the phenol buffer was more suitable in the range of 10~20 kDa.
Keywords
sorghum; peptide; SELDI-TOF MS; optimization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Farrokhi N., J. P. Whitelegge, and J. A. Brusslan. 2008. Plant peptides and peptidomics. Plant Biotechnol J 6 : 105-34.   DOI   ScienceOn
2 Gomiero A., D. M. Pampanin, A. Bjornstad, B. K. Larsen, F. Provan, E. Lyng, and O. K. Andersen. 2006. An ecotoxicoproteomic approach (SELDI-TOF mass spectrometry) to biomarker discovery in crab exposed to pollutants under laboratory conditions. Aquatic Toxicology 78, Supplement : S34-S41.   DOI   ScienceOn
3 Hamaker B. R., A. A. Mohamed, J. E. Habben, C. P. Huang, and B. A. Larkins. 1995. Efficient procedure for extracting maize and sorghum kernel proteins reveals higher prolamin contents than the conventional method. Cereal chemistry. 72 : 583-588.
4 Hartmann R. and H. Meisel. 2007. Food-derived peptides with biological activity : from research to food applications. Curr Opin Biotechnol 18 : 163-9.   DOI   ScienceOn
5 Hu L., M. Ye, and H. Zou. 2009. Recent advances in mass spectrometry-based peptidome analysis. Expert Rev Proteomics 6 : 433-47.   DOI   ScienceOn
6 Huang F., J. Clifton, X. Yang, T. Rosenquist, D. Hixson, S. Kovac, and D. Josic. 2009. SELDI-TOF as a method for biomarker discovery in the urine of aristolochic-acid-treated mice. ELECTROPHORESIS 30 : 1168-1174.   DOI   ScienceOn
7 Isaacson T., C. M. Damasceno, R. S. Saravanan, Y. He, C. Catala, M. Saladie, and J. K. Rose. 2006. Sample extraction techniques for enhanced proteomic analysis of plant tissues. Nat Protoc 1 : 769-74.   DOI   ScienceOn
8 Issaq H. J., T. D. Veenstra, T. P. Conrads, and D. Felschow. 2002. The SELDI-TOF MS approach to proteomics: protein profiling and biomarker identification. Biochem Biophys Res Commun 292 : 587-92.   DOI   ScienceOn
9 Ndao M., A. Rainczuk, M. -C. Rioux, T. W. Spithill, and B. J. Ward. 2010. Is SELDI-TOF a valid tool for diagnostic biomarkers? Trends in Parasitology 26 : 561-567.   DOI   ScienceOn
10 Panicker G., D. R. Lee, and E. R. Unger. 2009. Optimization of SELDI-TOF protein profiling for analysis of cervical mucous. J Proteomics 71 : 637-46.   DOI   ScienceOn
11 Petricoin E. F. and L. A. Liotta. 2004. SELDI-TOF-based serum proteomic pattern diagnostics for early detection of cancer. Curr Opin Biotechnol 15 : 24-30.   DOI   ScienceOn
12 Povero G., M. Papale, G. Loreto, A. Alpi, P. Perata, and E. Loreti. 2010. Identification of Grapevine Cultivar Biomarkers Using Surface-Enhanced Laser Desorption and Ionization (SELDI- TOF-MS). Am. J. Enol. Vitic. 61 : 492-497.   DOI
13 Rollin D., T. Whistler, and S. D. Vernon. 2007. Laboratory methods to improve SELDI peak detection and quantitation. Proteome Sci 5 : 9.   DOI
14 Baggerly K. A., J. S. Morris, and K. R. Coombes. 2004. Reproducibility of SELDI-TOF protein patterns in serum: comparing datasets from different experiments. Bioinformatics 20 : 777-85.   DOI   ScienceOn
15 Zhong L., D. L. Taylor, and R. J. Whittington. 2010. Proteomic profiling of ovine serum by SELDI-TOF MS: optimisation, reproducibility and feasibility of biomarker discovery using routinely collected samples. Comp Immunol Microbiol Infect Dis 33 : 47-63.   DOI   ScienceOn
16 Akashi T. and T. Yamori. 2007. A novel method for analyzing phosphoproteins using SELDI-TOF MS in combination with a series of recombinant proteins. Proteomics 7 : 2350-2354.   DOI   ScienceOn
17 Badri M. A., D. Rivard, K. Coenen, L. P. Vaillancourt, C. Goulet, and D. Michaud. 2009. A SELDI-TOF MS procedure for the detection, quantitation, and preliminary characterization of low-molecular-weight recombinant proteins expressed in transgenic plants. Proteomics 9 : 233-41.   DOI   ScienceOn
18 Bradford M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72 : 248-54.   DOI   ScienceOn
19 Dijkstra M., R. J. Vonk, and R. C. Jansen. 2007. SELDI-TOF mass spectra : A view on sources of variation. Journal of Chromatography B 847 : 12-23.   DOI   ScienceOn
20 Ebert B., C. Melle, E. Lieckfeldt, D. Zoller, F. von Eggeling, and J. Fisahn. 2008. Protein profiling of single epidermal cell types from Arabidopsis thaliana using surface-enhanced laser desorption and ionization technology. J Plant Physiol 165 : 1227-37.   DOI   ScienceOn
21 Emami K., N. J. Morris, S. J. Cockell, G. Golebiowska, Q. Y. Shu, and A. M. Gatehouse. 2010. Changes in protein expression profiles between a low phytic acid rice (Oryza sativa L. Ssp. japonica) line and its parental line : a proteomic and bioinformatic approach. J Agric Food Chem 58 : 6912-22.   DOI   ScienceOn