Browse > Article
http://dx.doi.org/10.7740/kjcs.2012.57.4.373

Effect of Planting Date, Temperature on Plant Growth, Isoflavone Content, and Fatty Acid Composition of Soybean  

Jung, Gun-Ho (National Institute of Crop Science, RDA)
Lee, Jae-Eun (National Institute of Crop Science, RDA)
Kim, Yul-Ho (National Institute of Crop Science, RDA)
Kim, Dae-Wook (National Institute of Crop Science, RDA)
Hwang, Tae-Young (National Institute of Crop Science, RDA)
Lee, Kwang-Sik (National Institute of Crop Science, RDA)
Lee, Byung-Moo (Department of Plant Biotechnology, Dongguk Univ.)
Kim, Hong-Sig (Department of Crop Science, Chungbuk National University)
Kwon, Young-Up (National Institute of Crop Science, RDA)
Kim, Sun-Lim (National Institute of Crop Science, RDA)
Publication Information
KOREAN JOURNAL OF CROP SCIENCE / v.57, no.4, 2012 , pp. 373-383 More about this Journal
Abstract
Soybean, C.V. Daewonkong, was planted on 25 May and 25 June in 2011, and four temperature gradient, control (ambient temperature in field plot), control + $3^{\circ}C$, control + $4^{\circ}C$, and control + $5^{\circ}C$, were artificially created by controlling the green house system. The obtained results indicated that vegetative growth of soybean plant was beneficially facilitated by planting on May (PM) than planting on June (PJ). The 100-seed weight was significantly higher in PM, and positively affected by increasing temperature, whereas the weight was reduced in control + $5^{\circ}C$ plot. Isoflavone content and fatty acid composition were analyzed to determine the effects of plating date and growth temperature. Isoflavone content was higher in PJ plot ($1479.8{\mu}g/g$) than in PM plot ($1201.8{\mu}g/g$), however, the influence of growth temperature varied with planting date. The composition of oleic acid was positively affected by increasing temperature, whereas the proportions of linoleic and linolenic acid were reduced. The numbers of node was considered as a major variable in the regression equations estimated using forward stepwise regression analysis for isoflavone content and unsaturated fatty acid under different environmental conditions.
Keywords
soybean; planting date; growth temperature; isoflavone; fatty acid;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kang, K. K., D. B. Lee, and Y. E. Na. 2011. RDA Interrobang 17. www.rda.go.kr.
2 Aussenac, T., S. Lacombe, and J. Dayde. 1998. Quantification of isoflavones by capillary zone electrophoresis in soybean seeds: Effects of variety and environment. Am. J. Clin. Nutr. 68: 480S-1485S.
3 Beuerlein, J. and A. Dorrance. 2005. Chapter 5: Soybean production. Ohio Agronomy Guide, 14th Edition, Bulletin 472-05.
4 Bilyeu, K. D., L. Palavalli, D. A. Sleper, and P. R. Beuselinck. 2003. Three microsomal omega-3 fatty-acid desaturase genes contribute to soybean linolenic acid levels. Crop Sci. 43 : 1833-1838.   DOI
5 Carver, B. F., J. W. Burton, T. E. Jr. Carter, and R. F. Wilson. 1986. Response to environmental variation of soybean lines selected for altered unsaturated fatty acid composition, Crop Sci. 26 : 1176-1191.   DOI
6 Cho, J. W. and T. Yamakawa. 2008. Comparison of dry matter production and photosynthetic rate against different planting dates between late and early maturing soybean cultivars in paddy field. J. Fac. Agr., Kyushu Univ., 53 (2) : 389-393.
7 Custodio, R. P. T., T. Shiraiwa, K. Homma, E. Kumagai, and R. Sameshima. 2012. The response of soybean seed growth characteristics to increased temperature under near-field conditions in a temperature gradient chamber. Field Crops Research. 131 : 26-31.   DOI   ScienceOn
8 Dornbos, Jr., D. L. and R. E. Mullen. 1992. Soybean seed protein and oil contents and fatty acid composition adjustments by drought and temperature. 1992. J. Am. Oil Chem. Soc. 69 : 228-231.   DOI
9 Duthion, C. and A. Pigeaire. 1991. Seed Lengths corresponding to the final stage in seed abortion of three grain Legumes. Crop Sci., 31 : 1579-1583.   DOI
10 Eldridge, A. C. and W. F. Kwolek. 1983. Soybean isoflavones: Effect of environment and variety on composition. J Agric Food Chem. 31 : 394-396.   DOI
11 Gibson, L. R. and R. E. Mullen. 1996. Soybean seed quality reductions by high day and night temperature. Crop Sci., 36 : 1615-1619.   DOI
12 Kim, S. H., W. S. Jung, J. K. Ahn, J. A. Kim, and I. M. Chung. 2005. Quantitative analysis of the isoflavone content and biological growth of soybean (Glycine max L.) at elevated temperature, $CO_{2}$ level and N application. J. Sci. Food Agric. 85 : 2557-2566.   DOI
13 Howell, R. W. and F. I. Collins. 1957. Factors affecting linolenic and linoleic acid content of soybean oil, Agron. J. 49 : 593-597.   DOI
14 Howell, R. W. and J. L. Cartter. 1958. Physiological factors affecting composition of soybeans: ii. Response of oil and other constituents of soybeans to temperature under controlled conditions, Agron. J. 50 : 664-667.   DOI
15 Huxley, P. A., R. J. Summerfied, and P. Hughes. 1976. Growth and development of soybean CV-TK5 as affected by tropical day lengths, day/night temperatures and nitrogen nutrition. Ann. Apply. Biol., 82 : 117-133.   DOI
16 Kitamura. K., K. Igita, A. Kikuchi. S. Kudou, and K. Okubo. 1991. Low isoflavone content in some early maturing cultivars, so-called "summer-type soybeans" (Glycine max (L) Merrill). Japan. J. Breed. 41 : 651-654.   DOI
17 Liu, K. S. 1996. Soybeans : chemistry, technology and utilization. Chapman and Hall, New York, p. 4.
18 Lozovaya V. V., A. V. Lygin, A. V. Ulanov, R. L. Nelson, J. Dayde, and J. M. Widhohn. 2005. Effect of temperature and soil moisture status during seed development on soybean seed isoflavone concentration and composition. Crop Sci. 45 : 1934-1940.   DOI   ScienceOn
19 Mochizuki, A., T. Shiraiwa, H. Nakagawa, and T. Horie. 2005. The effect of temperature during the reproductive period on development of reproductive organs and the occurrence of delayed stem senescence in soybean. Jpn. J. Crop Sci. 74 : 339-343.   DOI
20 Molteni, A., L. Brizio-Molteni, and V. Persky. 1995. In vitro hormonal effects of soybean isoflavones. J. Nutrition. 125 : 751-756.
21 Monje, M. C. M. Berger, V. Farines, K. Reybier, A. Verger, J. Dayde, V. Theodorou, and F. Nepveu. 2006. Antioxidant capacity of cotyledons and germs of soybean in relation to their isoflavone content. Food Technol. Biotechnol. 44(4) : 493-498.
22 Munier-Jolain, N. G. and B. Ney. 1998. Seed growth rate in grain legumes II. Seed growth rate depends on cotyledon cell number. J. Exp. Bot. 49 : 1971-1976.   DOI
23 Rasolohery, C. A., M. Berger, A. V. Lygin, V. V. Lozovaya, R. L. Nelson, and J. Dayde. 2008. Effect of temperature and water availability during late maturation of the soybean seed on germ and cotyledon isoflavone content and composition. J. Sci. Food Agric. 88 : 218-228.   DOI
24 Rennie, B. D. and J. W. Tanner. 1989. Fatty acid composition of oil from soybean seeds grown at extreme temperatures. J. Am. Oil Chem. Soc. 66 : 1622-1624.   DOI
25 Rice-Evans, C. A., N. J. Miller, and G. Paganga. 1996. Structureantioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 20 : 933-956.   DOI   ScienceOn
26 Roger W. E. and A. D. Flowerday. 1984. Soybean panting date: when and why. University of Nebraska-Lincoln, File G687 under: Field Crops 0A-6, Soybeans.
27 Sakai, T., A. Kikuchi, H. Shimada, Y. Takada, Y. Kono, and S. Shimada. 2005. Evaluation of isoflavone contents and compositions of soybean seed and its relation with seeding time. Jpn. J. Crop Sci. 74(2) : 156-164.   DOI
28 Seguin P., W. J. Zheng, D. L. Smith, and W. H. Deng. 2004. Isoflavone content of soybean cultivars grown in eastern Canada. J. Sci. Food Agric. 84 : 1327-1332.   DOI
29 Thomas, J. M. G., K. J. Boote, L. H. Allen, Jr., M. Gallo- Meagher, and J. M. Davis. 2003. Elevated temperature and carbon dioxide effects on soybean seed germination and transcript abundance. Crop Sci. 43 : 1548-1557.   DOI   ScienceOn
30 Sionit, N., B. R. Strain, and E. P. Flint. 1987. Interaction of temperature and $CO_{2}$ enrichment on soybean: Growth and dry matter partitioning. Can. J. Plant Sci., 67 : 59-67.   DOI
31 Thomas, J. M. G., K. J. Boote, D. Dan, and L. H. Allen. 2010. Elevated temperature delays onset of reproductive growth and reduces seed growth rate of soybean. J. Agrocrop Sci. 1 : 19-32.
32 Tikkanen, M. J. and H. Adlercreutz. 2000. Dietary soy-derived isoflavone phytoestrogens: Could they have a role in coronary heart disease prevention?. Biochem. Pharmacol. 60 : 1-5.   DOI   ScienceOn
33 Tsukamoto, C., S. Shimada, K. Igita, S. Kudou, M. Kokubun, and K. Okubo. 1995. Factors affecting isoflavone content in soybean seeds: Changes in isoflavones, saponins, and composition of fatty acids at different temperatures during seed development. J. Agric. Food Chem. 43 : 1184-1192.   DOI   ScienceOn
34 United Nations Environmental Programme. 2006. Crop production in a changing climate. In: GEO year book 2006. http://www. unep.org/geo/yearbook/yb2006/063.asp.
35 Wilcox, J. R. and J. F. Cavins. 1992. Normal and low linolenic acid soybean strains : response to planting date, Crop Sci. 32 : 1248-1251.   DOI
36 Wolf, R. B., J. F. Canvins, R. Kleiman, and L. T. Black. 1982. Effect of temperature on soybean seed constituents; oil, protein, moisture, fatty acids, amino acids and sugars. J. Am. Oil Chem. Soc. 59 : 230-232.   DOI
37 Zheng, S., H. Nakamoto, K. Yoshikawa, T. Furuya, and M. Fukuyama. 2002. Influences of high night temperature on flowering and pod setting in soybean. Plant Prod. Sci. 5(3) : 215-218.   DOI
38 Yue, X., A. A. Moursy, and Z. Xu. 2010. Distribution of isoflavones and antioxidant activities of soybean cotyledon, coat and germ. J. Food Proc. Pres. 34(5) : 795-806.   DOI