Browse > Article
http://dx.doi.org/10.7740/kjcs.2012.57.4.343

Production of Colchicine Induced Tetraploids in Rye (Secale cereale L.)  

Hwang, Jong-Jin (National Institute of Crop Science, Rural Development Administration)
Kim, Dea-Wook (National Institute of Crop Science, Rural Development Administration)
Kim, Chul-Woo (Bioenergy Crop Research Center, National Institute of Crop Science, Rural Development Administration)
Son, Beum-Young (National Institute of Crop Science, Rural Development Administration)
Baek, Seong-Beum (National Institute of Crop Science, Rural Development Administration)
Park, Hyong-Ho (National Institute of Crop Science, Rural Development Administration)
Ku, Ja-Hwan (National Institute of Crop Science, Rural Development Administration)
Kim, Jung-Tae (National Institute of Crop Science, Rural Development Administration)
Lee, Jin-Seok (National Institute of Crop Science, Rural Development Administration)
Moon, Jung-Kyung (National Institute of Crop Science, Rural Development Administration)
Kwon, Young-Up (National Institute of Crop Science, Rural Development Administration)
Han, Ouk-Kyu (National Institute of Crop Science, Rural Development Administration)
Publication Information
KOREAN JOURNAL OF CROP SCIENCE / v.57, no.4, 2012 , pp. 343-352 More about this Journal
Abstract
This experiment was carried out to report some data such as survival rate, tetraploid production efficiency, and agronomic characteristics of offspring from the induced tetraploid by the colchicine treatment in rye. The colchicine was soaked with 0.05%, 12 hours in dark condition and at two growth stages (green seed and 2nd leaf stage) in diploid ryes. Flow cytometry (FC) was proved to be efficient and rapid tool for screening ploidy levels in rye, showing around 40 to 60 in DNA amount (DAP1) corresponding to diploid and 80 to 110 tetraploid. There were 18.5% of survival rate at green seed treatment and 78% at 2nd leaf stage in average of two rye cultivars, Gogu and Jogreen, but in reverse 50.9% and 1.1% in the ratio of tetraploid to total tillers among the plants survived, respectively, resulting in 9.42% of tetraploid production rate in green seed treatment and 0.86% at 2nd leaf stage, respectively. In green seed treatment, there were 33% of survival rate in Gogu, 4% in Jogreen in 1st year, but 56% in Gogu, 21% in Jogreen and 49% in Charmgreen, respectively. The rate of tetraploid to total spikes among survived was 53.7% in Gogu, 32.4% in Jogreen, and 50.9% in average in 1st year, and 64.1% in Gogu, 51.5% in Jogreen, 60% in Charmgreen, and 60.5% in average in 2nd year. In green seed treatment, tetraploid production rate (survival rate ${\times}$ tetraploid ratio ${\times}$ 100) was 17.7% in Gogu and 1.3% in Jogreen and 9.42% in average in 1st year, and 35.9% in Gogu, 10.8% in Jogreen, 29.4% in Charmgreen, and 25.4% in average of three diploid rye cultivars. By the colchicine treatment with 0.05% for 12 hours in Gogu and Jogreen, 35 tetraploid plants were obtained and they produced 2,673 seeds with 148 spikes. There were 3.3-4.4 in the number of spikes per plant, 15.6-18.3 in grain number per spike, and 37.6 g in Gogu and 46.8 g in Jogreen in the 1,000-grain weight.
Keywords
rye; tetraploid; colchicine; induction; flow cytometry;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Bashir, A., J. A. Auger, and A. Lane Rayburn. 1993. Flow cytometric DNA analysis of wheat-rye addition lines. Cytometry 14 : 843-847.   DOI
2 Bremer, G. and D. E. Bremer-Reinders. 1954. Breeding tetraploid rye in the Netherlands. I. Methods and cytological investigations. Euphytica 3 : 49-63.   DOI
3 Bushuk, W. 2001. Rye : Production, chemistry and technology, 2nd ed., Amer. Assoc. Cereal Chem., MN, USA.
4 Dermen, H. 1940. Colchicine polyploidy and technique. Botanic. rev. 6(11) : 599-635.   DOI
5 Dorsen, E. 1936. Induced polyploidy in wheat and rye. J. Hered. 27 : 155-160.
6 Duren, M., R. Morpurgo, J. Dolezel, and R. Afza. 1996. Induction and verification of autotetraploids in diploid banana (Musa acuminata) by in vitro techniques. Euphytica 88 : 25-34.   DOI
7 Falke, K. C., Z. Susic, B. Hackauf, and B. Korzun. 2008. Establishment of introgression libraries in hybrid rye (Secale cereal L.) from an Iranian primitive accession as a new tool for rye breeding and genomics. Theor. Appl. Genet. 117(4) : 641-652.   DOI
8 Geiger, H. H. and T. Miedaner. 2009. Cereals, rye breeding, M. J. Carena (ed.), Springer, ND, USA. pp. 157-181.
9 Ha, Y. W., J. J. Hwang, B. R. Sung, S. Y. Lee, K. B. Youn, J. H. Park, N. H. Song, and H. S. Hur. 1989. A new high forage yielding and early rye variety 'Chochunhomil'. Res. Rept. RDA (U & I) 31(2) : 51-55.
10 Ha, Y. W., J. J. Hwang, M. E. Park, H. S. Song, C. S. Park, Y. S. Kim, and B. R. Sung. 1990. A new high forage yielding rye variety 'Chunchuhomil'. Res. Rept. RDA (U & I) 32(3) : 7-12.
11 Heo, H. Y., H. H. Park, J. J. Hwang, H. S. Kim, O. K. Han, T. I. Park, J. H. Seo, D. W. Kim, S. Y. Kim, S. J. Kim, and K. H. Park. 2009a. A new early-heading and highyielding forage rye variety, 'Olgreen'. Kor. J. Breed. Sci. 41(4) : 625-629.
12 Heo, H. Y., H. H. Park, J. J. Hwang, H. S. Kim, O. K. Han, T. I. Park, J. H. Seo, D. W. Kim, S. Y. Kim, S. J. Kim, and K. H. Park. 2009b. A new early-heading and high forage yielding rye variety 'Egreen'. Korean J. Breed. Sci. 41(4) : 620-624.
13 Heo, H. Y., H. H. Park, Y. U. Kwon, J. G. Kim, J. H. Nam, S. J. Kim, and J. K. Lee. 2004. A new high yielding rye variety 'Gogu'. Treat. Crop Sci. 6 : 59-66.
14 Heo, H. Y., K. G. Park, J. J. Hwang, H. S. Song, J. H. Nam, H. H. Park, Y. W. Ha, Y. C. Lim, J. I. Ju, and M. W. Park. 1998. Early heading and high forage yielding new rye variety 'Olhomil'. RDA J. Crop Sci(II) 40(2) : 88-91.
15 Hong, S. Y., Y. S. Lee, S. D. Kim, and T. S. Kim. 1999. Diploid production of grape using colchicine. Kor. J. Hort. Sci. Technol. 17(5) : 178.
16 Hwang, J. J., K. B. Youn, N. H. Song, C. S. Park, Y. S. Kim, and B. R. Sung. 1987. A new high yielding forage rye variety 'Dooroohomil'. Res. Rept. RDA (Crop) 29(1) : 193-197.
17 Hwang, J. J., W. S. Ahn, K. B. Youn, B. R. Sung, J. H. Lee, W. J. Lee, C. H. Cho, Y. S. Kim, C. S. Park, K. Y. Chung, and B. Y. Kim. 1985. An early and high forage yielding rye variety 'Paldanghomil' as soiling crops. Res. Rept. RDA (Crop) 27(2) : 156-160.
18 Jaskani, N. J., S. W. Kwon, and D. H. Kin. 2005. Flow cytomety of DNA contents of colchicine treated watermelon as a ploidy screening method at M1 stage. Pak. J. Bot. 37(3) : 685-696.
19 Kim I. H., J. S. Park, H. H. Kim, J. S. Yun, C. H. Lee, and C. H. Lee. 2005. Breeding of tetraploid in platycodon grandflorum (Jacq.) A. DC. by colchicine treament. Kor. J. Hort. Sci. Technol. 23(I) : 13.
20 Kim, M. S., J. Y. Won, Y. R. Lee, J. Y. Kim, B. H. Kim, and J. S. Eun. 1998. Induction of polyploid of in vitro symbidium by colchicine treatment. Kor. J. Hort. Sci. Technol. 16(1) : 189.
21 Koh, G. C. 2002. Tetraploid production of moodeungsan watermelon. J. Kor. Soc. Hort. Sci. 43(6) : 671-676.   과학기술학회마을
22 Koh, J. C, C. K. Sang, I. K. Youn, E. J. Lee, and J. M. Lee. 2001. Effect of colchicine treatment for polylploidy induction of Iris ensata. Kor. J. Hort. Sci. Technol. 19(2) : 91.
23 Kubalakoba, M., M. Valarik, J. Bartos, J. Vrana, J. Cihalikova, M. Molnar-Lang, and J. Dolezel. 2003. Analysis and sorting of rye (Secale cereale L.) chromosomes using flow cytometry. Genome 46 : 893-905.   DOI
24 Lee, J. H., Y. Ma, T. Wako, L. C. Li, K. Y. Kim, S. W. Park, S. Uchiyama, and K. Fukui. 2004. Flow karyotypes and chromosomal DNA contents of genus Triticum species and rye (Secale cereale). Chrom. Res. 12 : 93-102.   DOI
25 Marie, B. 1955. Production of polyploids by colchicine. Euphytica 4 : 76-82.
26 MFAFF. 2010. Food statistical yearbook. Ministry for Food, Agriculture, Forestry and Fisheries, Seoul, Korea.
27 Ochatt, S. 2008. Flow cytometry in plant breeding. Cytometry Part A. 73A, pp. 581-598.   DOI
28 Ono, S. and K. Hosaka. 2010. Efficient chromosome number estimation using flow cytometry in the backcross of Solanum demissum (2n=6X=72) to S. tuberosum (2n=4X=48). Amer. J. Potato Res. 87(6) : 553-556.   DOI
29 Pfosser, M., A. Amon, T. Lelley, and E. Heberle-Bors. 1995. Evaluation of sensitivity of flow cytometry in detecting aneuploidy in wheat using disomic and ditelosomic wheatrye addition lines. Cytometry 21 : 387-393.   DOI   ScienceOn
30 Scoles, G. J., J. P. Gustafson, and J. G. McLeod. 2001. Genetic and breeding. in Rye : Production, chemistry and technology (2nd eds), V. Walter (ed.), Amer. Assoc. Cereal Chem., MN., USA. pp. 9-32.
31 Sung, G. B., H. B. Kim, I. P. Hong, S. H. Nam, and I. M. Chung. 2007. Characteristics of new breed mulberry cultivar 'Daesungppong' (Morus Lhou (Ser.) Koidz.) for mulberry fruit production. Kor. J. Seric. Sci. 49(2) : 56-59.
32 Sung, G. B., H. W. Nam, H. B. Kim, I. P. Hong, and S. U. Lee. 2004. Breeding of good quality leaves high yielding mulberry cultivar 'Suilppong' (Morus alba L.). Kor. J. Seric. Sci. 46(1) : 12-17.
33 Tulay, E. and M. Unal. 2010. Production of colchicine induced tetraploids in Vicia villosa roth. Caryologia 63(3) : 292-303.   DOI
34 Wexelsen, H., J. Aastveit, and M. Brogado. 1961. Some data on selection of tetraploid rye. Euphytica 10 : 244-256.
35 Yun, J. S., E. Y. Hong, I. H. Kim, S. K. Shin, T. Yun, C. H. Lee, T. S. Kim, and K. Y. Paek. 2004. Breeding of new tetraploid Bletilla striata Reiehb. fil., 'Chungbuk Jaran'. Kor. J. Hort. Sci. Technol. 22(4) : 495-498.