Browse > Article
http://dx.doi.org/10.7740/kjcs.2011.56.4.361

Analysis of Phenolic Compounds in Sorghum, Foxtail Millet and Common Millet  

Jeon, Hyun-Seok (Department of Applied Life Science, College of Life and Environmental Science, Konkuk University)
Chung, Ill-Min (Department of Applied Life Science, College of Life and Environmental Science, Konkuk University)
Ma, Kyung-Ho (National Academy of Agricultural Science, Rural Development Administration)
Kim, Eun-Hye (Department of Applied Life Science, College of Life and Environmental Science, Konkuk University)
Yong, Soo-Jung (Department of Applied Life Science, College of Life and Environmental Science, Konkuk University)
Ahn, Joung-Kuk (Department of Applied Life Science, College of Life and Environmental Science, Konkuk University)
Publication Information
KOREAN JOURNAL OF CROP SCIENCE / v.56, no.4, 2011 , pp. 361-374 More about this Journal
Abstract
The cereal grain crops have strong flexibility against adverse environment and they have various functional compounds. The objective of the present study was to screen phenolic compounds in sorghum [Sorghum bicolor (L.) Moench], foxtail millet (Setaria italica), common millet (Panicum miliaceum L.) by high performance liquid chromatography (HPLC) with photodiode array (PDA) detector. Sorghum contained the highest amount of phenolic compounds among three different crops (sorghum, foxtail millet, common millet). Especially Moktaksusu showed the highest amount of phenolic compounds concentrations and biggest regional differences. The comparison of average phenolic compounds in sorghums by regions showed order to Milyang ($963.3\;{\mu}g{\cdot}g^{-1}$), Yeongyang ($923.1\;{\mu}g{\cdot}g^{-1}$), Gijang ($831.3\;{\mu}g{\cdot}g^{-1}$) and Bonghwa ($735.6\;{\mu}g{\cdot}g^{-1}$). Among the sorghum cultivars, Moktaksusu ($1407.9\;{\mu}g{\cdot}g^{-1}$) had the highest concentration of phenolic compounds. The average phenolic compounds of foxtail millets showed similar amount among Milyang ($319.0\;{\mu}g{\cdot}g^{-1}$), Gijang ($288.1\;{\mu}g{\cdot}g^{-1}$) and Bonghwa ($281.9\;{\mu}g{\cdot}g^{-1}$) areas. The phenolic compounds of Yeongyang ($246.6\;{\mu}g{\cdot}g^{-1}$) slightly low and that showed similar concentrations among three different regions. The concentration of phenolic compounds in foxtail millets, Chungchajo ($335.6\;{\mu}g{\cdot}g^{-1}$) showed the highest concentrations. The average phenolic compounds of common millets showed the highest concentrations in Milyang ($305.5\;{\mu}g{\cdot}g^{-1}$), Bonghwa ($262.0\;{\mu}g{\cdot}g^{-1}$), Gijang ($195.1\;{\mu}g{\cdot}g^{-1}$), Yeongyang ($237.2\;{\mu}g{\cdot}g^{-1}$) in decreasing order. The concentration of phenolic compounds of common millets was the highest in the Norangchalgijang ($337.0\;{\mu}g{\cdot}g^{-1}$), Hwanggumgijang ($250.0\;{\mu}g{\cdot}g^{-1}$) was also relatively higher than others. The results of this study will provide basic information for breeding sorghums, foxtail millets and common millets with higher phenolic compound concentrations.
Keywords
HPLC; phenolic compounds; sorghum; foxtail millet; common millet;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Hahn, D. H., J. M. Faubion, and L. W. Rooney. 1983. Sorghum phenolic acids, their high performance liquid chromatography separation and their relation to fungal resistance. Cereal Chem. 60 : 255-259.
2 Harbone, J. B. and C. A. Williams. 2000. Advances in flavonoid research since 1992. Phytochem. 55 : 481-504.   DOI   ScienceOn
3 Huang, M. T. and T. Ferraro. 1992. Phenolic compounds in food and cancer prevention. in phenolic compounds in food and their effects on health. II: Antioxidants and cancer prevention. American Cancer Society; Washington, DC. 507 : 8-34.
4 Jacob, R. A. and B. J. Burri. 1996. Oxidative damage and defense. Am. J. Clin. Nutr. 63 : 985-990.
5 Jones, J. M. 2006. Grain-based foods and health. Cereal Foods World 51 : 108-113.
6 Kehrer, J. P. 1993. Free radicals as medicators of tissue injury and disease. Critical Reviews in Toxicology 23 : 21-48.   DOI   ScienceOn
7 Kil, H. Y., E. S. Seong, B. K. Ghimire, I. M. Chung, S. S. Kwon, E. J. Goh, K. Heo, M. J. Kim, J. D. Lim, D. Lee, and C. Y. Yu. 2009. Antioxidant and antimicrobial activities of crude sorghum extract. Food Chem. 115 : 1234-1239.   DOI   ScienceOn
8 Kim, E. H. S. H. Kim, J. I. Chung, H. Y. Chi, J. A. Kim, and I. M. Chung. 2006. Analysis of phenolic compounds and isoflavones in soybean seeds [Glycine max (L.) Merrill] and sprouts grown under different conditions. Eur. Food Res. Technol. 222 : 201-208.   DOI   ScienceOn
9 Kweon, M. H. H. J. Hwang, and H. C. Sung. 2001. Identification and antioxidant activity of novel chlorogenic acid derivatives from bamboo (Phyllostachys edulis). J. Agric. Food Chem. 49 : 4646-4655.   DOI   ScienceOn
10 Lee, J. Y., L. F. Wang, J. H, Kaik, and S. K. Park. 2007. Changes in volatile compounds of green tea during growing season at different culture areas. Korean J. Food Sci. Technol. 39 : 246-254.
11 Lee, S. J., P. Seguin, J. J. Kim, H. I. Moon, H. M. Ro, E. H. Kim, S. H. Seo, E. Y. Kang, J. K. Ahn, and I. M. Chung. 2010. Isoflavones in Korean soybeans differing in seed coat and cotyledon color. Journal of Food Composition and Analysis 23 : 160-165.   DOI   ScienceOn
12 Maga, J. A. 1978. Simple phenol and phenolic compounds in food flavor.Critical Reviews in Food Science and Nutrition 10 : 323-372.   DOI   ScienceOn
13 Dykes, L. and L. W. Rooney. 2007. Phenolic compounds in cereal grains and their health benefits. Cereal Foods World 52 : 105-111.
14 Block, G., B. Patterson, and A. Subar. 1992. Fruit, vegetables and cancer prevention: a review of the epidemiological evidence. Nutrition and Cancer 18 : 1-29.   DOI   ScienceOn
15 Castelluccio, C., G. Paganga, N. Melikian, G. P. Bolwell, J. B. Pridham, J. Dampson, and C. A. Rice-Evans. 1995. Antioxidant potential of intermediates in phenylpropanoid metabolism in higher plants. FEBS Lett. 368 : 188-192.   DOI   ScienceOn
16 Davis, J. M., E. A. Murphy, M. D. Carmichel, and B. Davis. 2009. Quercetin increases brain and muscle mitochondrial biogenesis and exercise tolerance. Am. J. Physiol. 296 : 1071-1077.
17 Silvina, B., L. and G. F. Cesar. 1998. (+)Catechin prevents human plasma oxidation. Free adical Biology and Medicine 24 : 435-441.   DOI   ScienceOn
18 Rudikovskaya, E. G., G. A. Fedorova, L. V. Dudareva, L. E. Makarova, and A. V. Rudikovskii. 2008. Effect of Growth Temperature on the Composition of Phenols in Pea Roots. Russian Jornal of Plant Physiology 55 : 712-715.   DOI   ScienceOn
19 Schindler, R. and R. Mentlein. 2006. Flavonoids and vitamin E reduce the release of the angiogenic peptide vascular endothelial growth factor from human tumor cells. Journal of Nutrition 136 : 1477-1482.
20 Sharma, S., J. D. Stutzman, G. J. Kelloff, and V. E. Steele. 1994. Screening of potential chemoprotective agents using biochemical markers of carcinogenesis. Cancer Res. 54 : 5848-5855.
21 Stohs, H. J. 1995. The role of free radicals in toxicity and disease. Journal of Basic and Clinical Physiology and Pharmacology 6 : 205-222.
22 Tan, S. C. 2000. Determinants of eating quality in fruits and vegetables. Proceedings of the Nutrition Society of Australia 24 : 183-190.
23 Thomas, M. J. 1995. The role of free radicals and antioxidant: how do we know that they are working. Critical Reviews in Food Science and Nutrition 35 : 21-39.   DOI   ScienceOn
24 Vallejo, F., F. A. Tomas-Barberan, and C. Garcia-Viguera. 2003. Effect of climatic and sulphur compounds and vitamin C, in the inflorescences of eight broccoli cultivars. Eur. Food Res. Technol. 216 : 395-401.
25 Veteli, T. O., K. Kuokkanen, R. Julkunen-tiitto, H. Roinenen, and J. Tahvanainen. 2002. Effects of elevated $CO_{2}$ and temperature on plant growth and herbivore defensive chemistry. Global Change Biology 8 : 1240-1252.   DOI   ScienceOn
26 Yao, L. H., Y. M. Jian, J. Shi, F. A. Tomas-Barberan, N. Datta, R. Singanusong, and S. S. Chen. 2004. Flavonoids in food and their health benefits. Plant Foods for Human Nutrition 59 : 113-122.   DOI   ScienceOn
27 Naim, M., U. Zehavi, S. Nagy, and R. I. Rouseff. 1992. Hydroxycinnamic acids as off-flavor precursors in citrus fruits and their products. in phenolic compounds in food and their effects on health. American Chemical Society ; Washington, DC 14 : 180-191.
28 Maggiolini, M., A. G. Recchia, D. Bonofiglio, S. Catalano, A. Vivacqua, A. Carpino, V. Rago, R. Rossi, and S. Ando. 2005. The red wine phenolics piceatannol and myricetin act as agonists for estrogen receptor in human breast cancer cells. Journal of Molecular Endocrinology 35 : 269-281.   DOI   ScienceOn
29 Murakami, A., H, Ashida, and J. Terao. 2008. Multitargeted cancer prevention by quercetin. Cancer Lett. 269 : 315-25.   DOI   ScienceOn
30 Naczk, M. and F. Shaahidi. 2004. Extraction and analysis of phenolics in food. Journal of Chromato.graphy A 1054 : 95-111.   DOI
31 Nothling, U., S. P. Murphy, L. R. Wilkens, B. E. Henderson, and L. N. Kolonel. 2007. Flavonols and pancreatic cancer risk : the multiethnic cohort study. American Journal of Epidemiology 166 : 924-931.   DOI   ScienceOn
32 Paganga, G., N, Miller, and C. A. Rice-Evans. 1999. The polyphenolic content of fruit and vegetables and their antioxidant activities. What does a serving constitute? Free Radical Res. 30 : 153-162.   DOI   ScienceOn
33 Peleg, H., M. Naim, R. I. Rouseff, and U. Zehavi. 1991. Distribution of bound and free phenolic compounds in oranges (Citrus sinensis) and grapefruits (Citrus paradisi). J. Sci. Food Agric. 57 : 417-426.   DOI
34 Powles, J. W. and A. R. Ness. 1996. Fruit and vegetables. and cardoivascular disease: A review. International Journal of Epidemiology 26 : 1-13.
35 Rebecca, J. R. 2003. Phenolic compounds in foods : An overview of analytical methodology. J. Agric. Food Chem. 51 : 2866-2887.