Browse > Article
http://dx.doi.org/10.7740/kjcs.2011.56.1.050

Variation of Pinitol Content for Domestic Legume Species in Korea  

Seo, Seung-Min (College of Agric. & Life Sciences, Kyungpook National University)
Jeong, Yeon-Shin (College of Agric. & Life Sciences, Kyungpook National University)
Hari, Dhakal Krisna (College of Agric. & Life Sciences, Kyungpook National University)
Shin, Dong-Hyun (College of Agric. & Life Sciences, Kyungpook National University)
Lee, In-Jung (College of Agric. & Life Sciences, Kyungpook National University)
Park, Eun-Sook (College of Agric. & Life Sciences, Kyungpook National University)
Lee, Jeong-Dong (College of Agric. & Life Sciences, Kyungpook National University)
Hwang, Young-Hyun (College of Agric. & Life Sciences, Kyungpook National University)
Publication Information
KOREAN JOURNAL OF CROP SCIENCE / v.56, no.1, 2011 , pp. 50-56 More about this Journal
Abstract
This study was designed to investigate variation of pinitol content in different parts of seventeen legume species including silk tree (Albizia julibrissin). D-pinitol has been demonstrated to exert insulin-like and anti-inflammatory effects. These legumes were collected from Gyeongsangbuk-Do in Korea. Significant difference in pinitol content was observed among 17 different legume species. However, it was the highest in sericea lespedeza (Lespedeza cuneata). The highest pinitol content was observed in leaf followed by stem, pod shell, seed and root among plant parts. Legume plants which had higher pinitol content in leaves were chinese pea shrub, bastard indigo, wild cowpea and sericea lespedeza, having 59.9 mg/g, 62.2 mg/g, 69.6 mg/g and 65.4 mg/g, respectively. Stem of astragali radix showed the highest pinitol content among all leagumes, which was 34.0 mg/g. In case of root, kudzuvine showed the highest pinitol content followed by licorice and chinese pea shrub, which were 24.6 mg/g, 16.9 mg/g, and 16.5 mg/g, respectively. However, in the case of pod shell and seed, only lablab purpureus and sericea lespedeza showed the highest pinitol content 52.5 mg/g (for pod shell) and 24.9 mg/g (for seed), respectively. Concluding, the sericea lespedeza showed the highest total pinitol content of whole plant followed by chinese redbud, chinese pea shrub, bastard indigo and silk tree. Considering the pinitol content and harvesting yield, sericea lespedeza can be used as a practical medicinal herb.
Keywords
pinitol; insulin-like; legume species; Sericea lespedez;
Citations & Related Records
Times Cited By KSCI : 9  (Citation Analysis)
연도 인용수 순위
1 Sun W. Q., X. P. Li, and B. L. Ong. 1999. Preferential accumulation of D-pinitol in Acrostichum aureum gametophytes in response to salt stress. Physiologia Plantarum. 105: 51-57.   DOI   ScienceOn
2 Szczecinski P., A. Gryff-Keller, M. Horbowicz, and L. B. Lahuta. 2000. Galactosylpinitols isolated from vetch (Vicia villosa Roth.) seeds. J. Agric. Food Chem. 48: 2717-2720.   DOI   ScienceOn
3 Yoon S. H., and W. M. Shim. 1996. Enzymatic properties of $beta$-amylase isolated from arrowroot. Korean J. Food & Nutrition. 9(1): 85-91.
4 Yu G. H., and Y. M. Kwon. 1995. Distribution of canavanine and free amino acids in legumes, Robinia pseudo-acacia, Wistaria floribunda, and Canavalia lineata. Korean J. Ecol. 18(4): 433-440.
5 Zhoh C. K., B. N. Kim, and G. H. Shin. 2006. Studies on the antioxidative and antimicrobial effects of Lespedeza bicolor extracts. Journal of the Korean Society of Esthetic & Cosmeceutics. 1(2): 109-120.
6 McManus, M. T., R. L. Bieleski, J. R. Caradus, and D. J. Barker. 2000. Pinitol accumulation in mature leaves of white clover in response to a water deficit. Environmental and Experimental Botany. 43: 11-18.   DOI   ScienceOn
7 Oh W. G., I. C. Jang, G. I. Jeon, E. J. Park, H. R. Park, and S. C. Lee. 2008. Antioxidative activity of extracts from Wistaria floribunda flowers. J. Korean Soc. Food Sci. Nutr. 37(6): 677-683.   DOI
8 Park J. H., Y. J. Lee, J. J. Kim, Y. C. Shin, and J. C. Kim. 2005. The effect of pinitol on cataractogenesis and antioxidative effect in Streptozotocin induced diabetic rats. J. Korean Ophthalmol. Soc. 46(11): 1886-1893.
9 Streeter J. G. 2001. Simple partial purification of D-pinitol from soybean leaves. Crop Science. 41(6): 1985-1987.   DOI
10 Park K. S., J. M. Lee, B. J. Ku, Y. S. Jo, S. K. Lee, K. W. Min, K. A. Han, H. J. Kim, and H. J. Kim. 2008. The effects of D-chiro-inositol on glucose metabolism in 3T3-L1 cells. Korean Diabetes Journal. 32: 196-203.   DOI   ScienceOn
11 Streeter J. G. D. G. Lohnes, and R. J. Fioritto. 2001. Plant, Cell and Environment. 24: 429-438.   DOI   ScienceOn
12 Kim M. J., K. H. Yoo, H. S. Park, S. M. Chung, C. J. Chin, Y. S. Choi, and C. H. Chung. 2005b. Effect of pinitol on glucose metabolism and adipocytokines in uncontrolled type 2 diabetes mellitus. Korean Diabetes Journal. 29(4): 344-351.
13 Kim S. J., C. Park, H. G. Kim, W. C. Shin, and S. Y. Choe. 2004. A study of the estrogenicity of Korean arrowroot (Pueraria thunbergiana). J. Korean Soc. Food Sci. Nutr. 33(1): 16-21.   DOI
14 Ku B. J., H. J. Kim and K. S. Park. 2007. The clinical study to evaluate the safety and efficacy of D-chiro-inositol in patients with type 2 diabetes. The Korean Journal of Medicine. 72(1): 29-36.
15 Lee C. H. 2009. Change of pinitol content at different growth stage in soybean plant. The Council of the Graduate School of Kyungpook National University. A thesis for the degree of Master of Agriculture.
16 Garland S., S. Goheen, P. Donald, L. McDonald, and J. Campbell. 2009. Application of derivatization gas chromatography/mass spectrometry for the identification and quantitation of pinitol in plant roots. Analytical Letters. 42: 2096-2105.   DOI   ScienceOn
17 Lee H. O., C. H. Kim, J. A. Lim, M. H. Lee and S. H. Baek. 2004. Antimicrobial effect of Puerariae thunbergiana extracts against oral micro-organism. Journal of Dental Hygiene Science. 4(1): 45-48.
18 Lee S. H., S. Y. Kim, J. J. Kim, T. S. Jang and S. R. Chung. 1999. The isolation of the inhibitory constituents on melanin polymer formation from the leaves of Cercis chinensis. Kor. J. Pharmacogn. 30(4): 397-403.
19 Ding J. L., I. J. Lim, H. D. Lee, and W. S. Cha. 2006. Analysis of minerals, amino acids and vitamin of Lespedeza cuneata. Korean J. Biotechnol. Bioeng. 21(6): 414-417.
20 Heath O. V. S. 1965. Diagrams of changes in the distribution of plant dry weight or other variables. Nature. 205: 921.
21 Jain R., S. Jain, A. Sharma, H. Ito, and T. Hatano. 2007. Isolation of (+)-pinitol and other constituents from the root bark of Tamarindus indica Linn. J. Nat. Med. 61: 355-356.   DOI   ScienceOn
22 Cheang K. I., P. Essah, and J. E. Nestler. 2004. A paradox: the roles of inositolphosphoglycans in mediating insulin sensitivity and hyper-androgenism in the polycystic ovary syndrome. Hormones (Athens, Greece). 3(4): 244-251.   DOI
23 Kim J. H., D. H. Kim, J. H. You, M. C. Kwon, H. J. Lee, H. J. Lee, and H. Y. Lee. 2005a. Anticancer and immune activities of the extracts from Amorpha fruticosa L. Korean J. Medicinal Crop Sci. 13(1): 41-47.
24 Kim J. I., J. C. Kim, H. J. Joo, S. H. Jung, and J. J.Kim. 2005c. Determination of total chrio-inositol conent in selected natural materials and evaluation of the antihyperglycemic effect of pinitol isolated from soybean and carob. Food Sci. Biotechnol. 14(4): 441-445.
25 고경식, 전의식. 2003. 한국의 야생식물. 일진사
26 Bates S. H., R. B. Jones, and C. J. Bailey. 2000. Insulin-like effect of pinitol. British Journal of Pharmacology. 130(8): 1944-1948.   DOI   ScienceOn
27 Chang K. Y. 1976. Studies on the resource utilization of leguminous plants. J. Inst. Agricultural Resource Uti. 10: 95-122.