Browse > Article

Effect of Nitrogen Fertilization levels on Growth and Isoflavone Content in Soybean  

Lee Mi-Ja (Honam Agricultural Research institute, NICS, RDA)
Park Jong-Chul (Honam Agricultural Research institute, NICS, RDA)
Oh Young-Jin (Honam Agricultural Research institute, NICS, RDA)
Kim Kyong-Ho (Rural Development Administration)
Kim Hyung-Soon (Dep. of Environ. & Chem. Eng. Seonam National University)
Lee Sang-Bok (Honam Agricultural Research institute, NICS, RDA)
Kim Jung-Gon (Honam Agricultural Research institute, NICS, RDA)
Publication Information
KOREAN JOURNAL OF CROP SCIENCE / v.51, no.5, 2006 , pp. 445-450 More about this Journal
Abstract
The nitrogen fertilization effect on growth characteristics and isoflavone content was investigated in this study, and isoflavone analyzed by HPLC with photodiode array (PDA) detector and reverse-phase $C_{18}$ column. Fertilization levels were no-fertilization, no nitrogen, 50% decreased in nitrogen, standard and 50% increased in nitrogen fertilization. The 50% increased nitrogen fertilization showed the highest growth characteristics then other fertilization level and the number of pod and seed showed maximum value 31.9 and 72.3, respectively, and seed yield was 2,460 kg/ha. During growth stages, isoflavone content in leaf, stem and root of soybean plants decreased to R5 stage then increased to R7 stage. Isoflavone content according to various nitrogen fertilization condition, in case of none fertilization, no nitrogen, 50% decreased nitrogen fertilization showed higher value than those of standard and 50% increased nitrogen fertilization levels. Aglycon content among the isoflavone isomers showed much higher in plant than in seed. The highest isoflavone content was found in the root of soybean plant parts. Isoflavone content of seed was higher in none, no nitrogen, 50% decreased nitrogen than those of standard and 50% increased nitrogen fertilization.
Keywords
soybean; nitrogen fertilization; isoflavone; growth stage;
Citations & Related Records
연도 인용수 순위
  • Reference
1 김성란, 홍희도, 김성수. 1999. 콩 및 콩 제품 중의 isoflavone 함량과 특성, 한국콩연구회지. 16 : 35-46
2 Kodou, S., Y. Fleury, D. Welti, U. T. Magnolato, and K. Kitamura. 1991. Malonyl isoflavone glucosides in soybean seeds. Agric. Biol, Chem. 55 : 2227-2233   DOI
3 Morris, P. F., M. E. Savard, and E. W. B. Ward. 1991, Identification and accumulation of isoflavonoids and isoflavone glucosides in soybean leaves and hypocotyls in resistance responses to phytophtora megasperma f. sp. glycinea. Physiol. Molecular Plant Phathol. 39(3) : 229- 244   DOI
4 이수경, 이민준, 윤선, 권재중.2000. 한국 중년여성의 대두식품을 통한 이소플라본 섭취 수준 조사. J. Korean Soc. Food Sci. Nutr. 29: 948-956
5 Record, I. R., E. Iver, and J. K. Mcinerny. 1995. The antioxidant activity of genistein in vitro. Nutr. Biochemistry 6 : 481-485   DOI   ScienceOn
6 Tony, J. V., Y. Xinhua, W. B. Tom, C. J. Chung-Ja, I. R. Jackson, and M. B. Sylvie. 2002. Potassium fertilization effects on isoflavone concentrations in soybean [Glycine max(L) Merr.]. J Aggri. and Food Chem. 50 : 3501-3506   DOI   ScienceOn
7 Yamashita, Y., S. Kawada, and H. Nakano. 1991. Induction of mammalian topoisomerase II dependent DNA cleavage by nonintercalative flavonoids genistein and orobol. FEBS letter 288 : 46   DOI
8 Kosslak, R. M., R. Bookland, J. Barkei, H. E. Paaren, and E. R. Appelbaum, 1987. Induction of Bradirhizobium japonicum common nod genes by isoflavones isolated from gkycine max. Proc. Natl. Acad. Sci. 84 : 7428-7432
9 Choi, Y. B. and H. S. Sohn. 1998. Isoflavone content in korean fermented and unfermented soybean foods. Korean J. Food Sci. Technol. 30 : 745-750   과학기술학회마을
10 Murphy, P. A. 1982. Phytoestrogen content of processed soybean products. J. Food. Tech. 36, 60-64
11 Walter, E. D. 1941. Genistein (an isoflavone glycoside) and its aglycone, genistein from soya beans. J. AM. Chem. Soc. 65 : 3273-3275
12 Barnes, S. and H. C. Blair. 1996. Genistein for use in inhibiting osteroclasts. Us. patent. 550 : 6211
13 Harrison, G. G. and S. Cho. 1999. Chaging global patterns and implications of soybean consumption. 8th asian congress of nutrition, Aug.29-Sep.2. Seoul, Korea
14 Choi, J. S., T. W. Kwon, and J. S. Kim. 1996. Isoflavone contents in some varieties of soybean. Foods and Biotechnology. 5(2) : 167-169
15 Anlin, D., S. Junming, C. Ruzheng, and D. Huiru. 1995. The preliminary analysis of isoflavone content in chinease cultivars. Soybean Genetics Newsletter
16 Kim, S. R. and S. D. Kim. 1996. Studies on soybean isoflavones : I. content and distribution of isoflavones in Korea soybean cultivars. J. Agric. Sci. 38 : 155-165
17 Levitzki, A. and A. Gazit. 1995. Tyrosine kinase inhibition: An approach to drug development. Science 267 : 1782-1787   DOI
18 소은희, 구장환, 박금룡, 이영호. 2001. 콩 품종의 isoflavone 함량과 항산화 활성. 한국작물학회지 33 : 35-39
19 Richard, A. D. and L. P. Nancy. 1995. Stress-induced phenylpropanoid metabolism. The Plant Cell 7 : 1085-1097   DOI
20 Arthur, C. E. and F. K. William. 1983. Effect of environment and variety on composition. J. Agric. Food Chem. 31 : 394-396   DOI
21 최희돈, 김성수, 홍희도, 이진열 2000. 나물콩 품종별 콩나물의 물리화학적 및 관능적 특성 비교. 한국농화학회지 43 : 207-212