Browse > Article

Phytochemical Constituents of Suaeda japonica Makino  

Kim Jung Sook (Biohealth Products Research Center, Inje University)
Lee Sanghyun (Dept. of Applied Plant Science, Chung-Ang University)
Son Eun Mi (Biohealth Products Research Center, Inje University)
Pan Xu (Biohealth Products Research Center, Inje University)
Kim You-Ah (Division ol Ocean Science, Korea Maritime University)
Lee Gwan Sun (Hanmi Research Center, Hanmi Pharm. Co. Ltd.)
Seo Youngwan (Division ol Ocean Science, Korea Maritime University)
Lee Burm-Jong (Biohealth Products Research Center, Inje University)
Publication Information
KOREAN JOURNAL OF CROP SCIENCE / v.50, no.spc1, 2005 , pp. 208-210 More about this Journal
Abstract
Four compounds were isolated from Suaeda japonica by repeated column chromatography. Their structures were identified as 2'-hydroxy-6,7-methylenedioxy-isoflavone (1), loliolide (2), dehydrovomifoliol (3), and uridine (4) by spectral analysis and comparison with the published data. All compounds were isolated for the first time from this plant.
Keywords
Suaeda japonica; Chenopodiaceae; dehydrovomifoliol; 2'-hydroxy-6,7-methylenedioxyisoflavone; loliolide; uridine;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Arakawa, Y., Y. Asada, H. Ishida, A Chihi, and M. Izawa. 1982.Structures of new two isoflavones and one flavanone fromglasswort (Salicornia europaea L.). Journal of the Faculty ofAgriculture (Hokkaido University, Japan) 61 : 1-12.
2 Chihi, H., Y. Arakawa, S. Ueda, M. Kuroda, and M. Izawa. 1986.5,2'-Dihydroxy-6,7-methylenedioxyisoflavone from seed ballsof sugar beet. Phytochemistry 25 : 281-282.
3 Ham, S. B., Y. I. Kim, Y. S. Kwon, and C. M. Kim. 1999. Compoundsof the stem of Clematis trichotoma. Kor. J. Pharmacogn.30 : 301-305.
4 Kato, T.,M. Tsunakawa, N. Sasaki, and H. Aizawa. 1977. Growthand germination inhibitors in rice husks. Phytochemistry 16 :45-48.
5 Kim, M. R, S. K. Lee, C. S. Kim, K. S. Kim, and K. C. Moon.2004b. Phytochemical constituents of Carpesium macrocephalumFR.et SAV. Arch. Pharm. Res. 27: 1029-1033.
6 Chung, A K., H. C. Kwon, S. Z. Choi, Y.D. Min, S. O. Lee, W B.Lee, M. C. Yang, K. H. Lee, J. H. Nam, J. H. Kwak, and K. RLee. 2002. Norisoprenoids from Cirsium rhinoceros. Kor. J.Pharmacogn. 33: 81-84.
7 Pouchert, C. J. and J. Behnke. 1993. The Aldrich Library of BCand -n FT NMR Spectra, Aldrich Chemical Company Inc.,USA p. 3,371 B.
8 Ferreira, E. O. and D. A Dias. 2000. A methylenedioxyflavonolfrom aerial parts ofBlutaparon portulacoides. Phytochemistry53: 145-147.
9 Breckle, S.W 1990. Salinity tolerance ofdifferent halophyte types.,In Bassam, N., and Dambroth, M., (eds.), Genetic Aspects ofPlant Mineral Nutrition. Kluwer Academic Publishers, Dordrecht.pp. 167-175.
10 Kim, I. K., Y. W Chin, S. W Lim, W Y. Kim, and J. W Kim.2004a. Norisoprenoids and hepatoprotective flavone glycosidesfrom the aerial parts of Beta vulgaris var. cicla. Arch.Pharm. Res. 27: 600-603.
11 Mori, K. 1974. Carotenoids and degraded carotenoids. VI. Synthesesof optically active grasshopper ketone and dehydrovomifoliolas a synthetic support for the revised absolute configurationof (+)-abscisic acid. Terahedron 30 : 1065-1072.
12 Valdes III, L. J. 1986. Loliolide from Salvia divinorum. J. Nat.Prod. 49: 171.
13 Kim, J. A, Y. S. Choo, I. J. Lee, J. J. Bae, I. S. Kim, B. H. Choo,and S. D. Song. 2002. Adaptations and physiological characteristicsof three Chenopodiaceae species under saline environments.Kor. J. Ecol. 25: 101-107.
14 Park, K. E., Y. A Kim, H. A Jung, H. J. Lee, J. W Ahn, B. J. Lee,and Y. W Seo. 2004. Three norisoprenoids from the brownalga Sargassum thunbergii. J. Kor. Chern. Soc. 48: 394-398.
15 Wong, S. M., C. Konno, Y. Oshima, J. M. Pezzuto, H. H. S. Fong,and N. R. Farnsworth. 1987. Irisones A and B: Two new isoflavonesfrom Iris missouriensis. J. Nat. Prod. 50: 178-180.
16 Choo, Y. S. 1995. Mineral metabolism and organic solute patternin Carex species of Austria - An Ecophysiological Approach,Ph. D Thesis, University ofVienna. pp. 1-339.