Browse > Article
http://dx.doi.org/10.7736/KSPE.2012.29.1.114

Curve-typed PMMA Nanochannel Fabrication using Polymer Layer Transfer and Collapse Technique  

Cho, Young-Hak (School of Mechanical Design & Automation Engineering, Seoul Nat'l Univ. of Sci. & Tech.)
Kim, Sung-Dong (School of Mechanical Design & Automation Engineering, Seoul Nat'l Univ. of Sci. & Tech.)
Hwang, Ji-Hong (Department of Product Design & Manufacturing Engineering, Seoul Nat'l Univ. of Sci. & Tech.)
Publication Information
Abstract
We present a simple and low-cost method to fabricate poly(methyl-methacrylate) (PMMA) nanochannels with various shapes by combining the standard optical lithography with a PMMA layer transfer and collapse technique. We utilized PMMA membrane reflowing/collapsing phenomena into microchannels to fabricate nanochannels at both corners of arbitrarily-shaped microchannels. This allows nanochannels with various shapes such as curved nanochannels as well as straight nanochannels to be easily fabricated since the shape of the microchannel determines the shape of the nanochannels. This nanochannel fabrication method is simple, flexible, and low-cost since the standard optical lithography with low-resolution optical masks can be used to fabricate nanoscale channels as small as 100 nm wide with various shapes. Also, the sealing of nanochannels can be naturally achieved while the nanochannels are formed through the polymer layer transfer and collapse.
Keywords
Curve-Typed Nanochannel; Layer Transfer and Collapse; Imprint Lithography;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Reano, R. M. and Pang, S. W., "Sealed threedimensional nanochannels," J. Vac. Sci. Technol. B, Vol. 23, No. 6, pp. 2995-2999, 2005.   DOI
2 Zhang, L., Gu, F. X., Tong, L. M. and Yin, X. F., "Simple and cost-effective fabrication of twodimensional plastic nanochannels from silica nanowire templates," Microfluid. Nanofluid., Vol. 5, No. 6, pp. 727-732, 2008.   DOI
3 Cao, H., Yu, Z. N., Wang, J., Tegenfeldt, J. O., Austin, R. H., Chen, E., Wu, W. and Chou, S. Y., "Fabrication of 10 nm enclosed nanofluidic channels," Appl. Phys. Lett., Vol. 81, No. 1, pp. 174-176, 2002.   DOI
4 Guo, L. J., Cheng, X. and Chou, C. F., "Fabrication of size-controllable nanofluidic channels by nanoimprinting and its application for DNA stretching," Nano Letters, Vol. 4, No. 1, pp. 69-73, 2004.   DOI
5 Dumond, J, J., Low, H. Y. and Rodriguez, I., "Isolated, sealed nanofluidic channels formed by combinatorialmould nanoimprint lithography," Nanotechnology, Vol. 17, No. 8, pp. 1975-1980, 2006.   DOI
6 Schulz, H., Lyebyedyev, D., Scheer, H. C., Pfeiffer, K., Bleidiessel, G., Grutzner, G. and Ahopelto, J., "Master replication into thermosetting polymers for Nanoimprinting," J. Vac. Sci. Technol. B, Vol. 18, No. 6, pp. 3582-3585, 2000.   DOI
7 Langford, R. M., Nellen, P. M., Gierak, J. and Fu, Y. Q., "Focused ion beam micro- and nanoengineering," MRS Bulletin, Vol. 32, No. 5, pp. 417-423, 2007.   DOI
8 Lee, C., Yang, E. H., Myung, N. V. and George, T., "A nanochannel fabrication technique without nanolithography," Nano Letters, Vol. 3, No. 10, pp. 1339-1340, 2003.   DOI
9 Han, A. P., de Rooij, N. F. and Staufer, U., "Design and fabrication of nanofluidic devices by surface micromachining," Nanotechnology, Vol. 17, No. 10, pp. 2498-2503, 2006.   DOI
10 Craighead, H. G., "Future lab-on-a-chip technologies for interrogating individual molecules," Nature, Vol. 442, No. 7101, pp. 387-393, 2006.   DOI
11 Tegenfeldt, J. O., Prinz, C., Cao, H., Reisner, W. W., Riehn, R., Wang, Y. M., Cox, E. C., Sturm, J. C., Silberzan, P. and Austin, R. H., "The dynamics of genomic-length DNA molecules in 100-nm channels," Proc. Natl. Acad. Sci. USA, Vol. 101, No. 30, pp. 10979-10983, 2004.   DOI
12 Jo, K., Dhingra, D. M., Odijk, T., de Pablo, J. J., Graham, M. D., Runnheim, R., Forrest, D. and Schwartz, D. C., "A single-molecule barcoding system using nanoslits for DNA analysis," Proc. Natl. Acad. Sci. USA, Vol. 104, No. 8, pp. 2673-2678, 2007.   DOI
13 Mannion, J. T., Reccius, C. H., Cross, J. D. and Craighead, H. G., "Conformational analysis of single DNA molecules undergoing entropically induced motion in nanochannels," Biophys. J., Vol. 90, No. 12, pp. 4538-4545, 2006.   DOI
14 Abgrall, P. and Nguyen, N. T., "Nanofluidic devices and their applications," Anal. Chem., Vol. 80, No. 7, pp. 2326-2341, 2008.   DOI
15 Perry, J. L. and Kandlikar, S. G., "Review of fabrication of nanochannels for single phase liquid flow," Microfluid. Nanofluid., Vol. 2, No. 3, pp. 185- 193, 2006.   DOI
16 Riehn, R., Lu, M. C., Wang, Y. M., Lim, S. F., Cox, E. C. and Austin, R. H., "Restriction mapping in nanofluidic devices," Proc. Natl. Acad. Sci. USA, Vol. 102, No. 29, pp. 10012-10016, 2005.   DOI
17 Wang, K. G., Yue, S., Wang, L., Jin, A., Gu, C., Wang, P., Wang, H., Xu, X., Wang, Y. and Niu, H., "Manipulating DNA molecules in nanofluidic channels," Microfluid. Nanofluid., Vol. 2, No. 1, pp. 85-88, 2006.   DOI
18 Tamaki, E., Hibara, A., Kim, H. B., Tokeshi, M. and Kitamori, T., "Pressure-driven flow control system for nanofluidic chemical process," J. Chromatogr. A, Vol. 1137, No. 2, pp. 256-262, 2006.   DOI
19 Huh, D., Mills, K. L., Zhu, X., Burns, M. A., Thouless, M. D. and Takayama, S., "Tuneable elastomeric nanochannels for nanofluidic manipulation," Nature Materials, Vol. 6, No. 6, pp. 424-428, 2007.   DOI
20 Cho, Y. H., Lee, S. W., Kim, B. J. and Fujii, T., "Fabrication of silicon dioxide submicron channels without nanolithography for single biomolecule detection," Nanotechnology, Vol. 18, No. 46, Paper No. 465303, 2007.   DOI
21 Park, K. D., Lee, S. W., Takama, N., Fujii, T. and Kim, B. J., "Arbitrary-shaped nanochannels fabricated by polymeric deformation to achieve single DNA stretching," Microelectronic Engineering, Vol. 86, No. 4-6, pp. 1385-1388, 2009.   DOI
22 Hui, C. Y., Jagota, A., Lin, Y. Y. and Kramer, E. J., "Constraints on microcontact printing imposed by stamp deformation," Langmuir, Vol. 18, No. 4, pp. 1394-1407, 2002.   DOI   ScienceOn
23 Nishino, T., Meguro, M., Nakamae, K., Matsushita, M. and Ueda, Y., "The lowest surface free energy based on -$CF_{3}$ alignment," Langmuir, Vol. 15, No. 13, pp. 4321-4323, 1999.   DOI   ScienceOn
24 Park, H., Li, H. and Cheng, X., "Optimizing nanoimprint and transfer-bonding techniques for three-dimensional polymer microstructures," J. Vac. Sci. Technol. B, Vol. 25, No. 6, pp. 2325-2328, 2007.   DOI