Browse > Article
http://dx.doi.org/10.22156/CS4SMB.2022.12.02.149

Ti Deposition using Atmospheric Pressure Plasma Technology  

Kim, Kyoung-Bo (Department of Metallurgical and Materials Engineering, Inha Technical College)
Publication Information
Journal of Convergence for Information Technology / v.12, no.2, 2022 , pp. 149-156 More about this Journal
Abstract
In this paper, it was attempted to form a titanium (Ti: Titanium) thin film using the atmospheric pressure plasma process technology for the conductor, which is the main component of the optical sensor. The atmospheric plasma equipment was remodeled. A 4-inch Ti target for sputter was etched using CF4 gas, and the by-product was coated on a glass sample. These by-products were formed up to about 2 cm, and could be divided into 15 areas according to color. Surface shape and constituent elements were analyzed using scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS), respectively. Electrical properties using 4-point probe equipment were also measured. If the process is performed by positioning the sample at about 4.5 mm to 5 mm from the target, a uniform Ti thin film will be deposited. However, it was found that the thin film contained a significant amount of fluorine, which greatly affects the electrical properties of the thin film. Therefore, additional experiments and studies should be performed to remove or minimize fluorine during deposition.
Keywords
Optical sensor; Atmospheric pressure plasma; Titanium; CF4 gas; Fluorine;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 A. Inoue, T. Okino, S. Koyama & Y. Hirose (2020). Modeling and Analysis of Capacitive Relaxation Quenching in a Single Photon Avalanche Diode (SPAD) Applied to a CMOS Image Sensor. Sensors, 20(10), 3007. DOI : 10.3390/s20103007   DOI
2 Z. Krstic & V. D. Krstic (2012). Silicon nitride: the engineering material of the future, Journal of Materials Science, 47, 535-552. DOI : 10.1007/s10853-011-5942-5   DOI
3 M. D. Groner, F. H. Fabreguette, J. W. Elam & S. M. George (2004). Low-Temperature Al2O3 Atomic Layer Deposition. Chemistry of Materials, 16(4), 639-645. DOI : 10.1021/cm0304546   DOI
4 D. Arl, V. Roge, N. Adjeroud, B. R. Pistillo, M. Sarr, N. Bahlawane & D. Lenoble (2020). SiO2 thin film growth through a pure atomic layer deposition technique at room temperature. RSC Advances, 10(31), 18073-18081. DOI : 10.1039/D0RA01602K   DOI
5 H. Khachatryan, Y. H. Kim, K. B. Kim, H. J. Yang & M. J. Kim (2019). Direct etching of perovskite film by electron-beam scanning. Materials Science in Semiconductor Processing, 90, 171-181. DOI : 10.1016/j.mssp.2018.10.022   DOI
6 H. Khachatryan, S.-N. Lee, K.-B. Kim, H.-K. Kim & M. J. Kim (2018). Al thin film: The effect of substrate type on Al film formation and morphology. Journal of Physics and Chemistry of Solids, 122, 109-117. DOI : 10.1016/j.jpcs.2018.06.018   DOI
7 K. B. Kim, J. P. Lee & M. J. Kim (2020). Optical and electrical properties of AZO thin films deposited on OHP films. Journal of Convergence for Information Technology, 10(9), 28-34. DOI : 10.22156/CS4SMB.2020.10.09.028   DOI
8 O. A. Dicks, J. Cottom, A. L. Shluger & V. V. Afanas'ev (2019). The origin of negative charging in amorphous Al2O3 films: the role of native defects. Nanotechnology, 30(20), 205201. DOI : 10.1088/1361-6528/ab0450   DOI
9 H. P. Kim, M. J. Kim, K. B. Kim, H. Khachatryan & J. Jang (2017). Properties of atmospheric hydrogen-plasma-treated CH3NH3Pb3 perovskite films. Surface & Coatings Technology, 330, 228-233. DOI : 10.1016/j.surfcoat.2017.09.002   DOI
10 H. Khachatryan, H. P. Kim, S. N. Lee, H. K. Kim, M. J. Kim, K. B. Kim & J. Jang (2018). Novel method for dry etching CH3NH3PbI3 perovskite films utilizing atmospheric-hydrogen-plasma. Materials Science in Semiconductor Processing, 75, 1-9. DOI : 10.1016/j.mssp.2017.11.019   DOI
11 M. J. Kim (2021). Atmospheric pressure plasma etching technology for forming circular holes in perovskite semiconductor materials. Journal of Convergence for Information Technology, 11(2), 10-15. DOI : 10.22156/CS4SMB.2021.11.02.010   DOI
12 M. Roslina & M. R. Mokhtar (2020). Self-referencing optical intensity sensor based on radio-frequency spectrum interrogation. Optical Fiber Technology, 53, 102009. DOI : 10.1016/j.yofte.2019.102009   DOI
13 J.-I. Lee, S. Lee, H.-M. Oh, B. R. Cho, K.-H. Seo & M. Y. Kim (2020). 3D Contact Position Estimation of Image-Based Areal Soft Tactile Sensor with Printed Array Markers and Image Sensors. Sensors, 20(13), 3796. DOI : 10.3390/s20133796   DOI
14 H. Khachatryan, S.-N. Lee, K.-B. Kim & M. J. Kim (2019). Deposition of Al Thin Film on Steel Substrate: The Role of Thickness on Crystallization and Grain Growth. Metals, 9(12), 1-8. DOI : 10.3390/met9010012   DOI
15 K. B. Kim, J. P. Lee & M. J. Kim (2021). Characteristics by deposition and heat treatment of Cr and Al thin film on stainless steel. Journal of Convergence for Information Technology, 11(3), 167-173. DOI : 10.22156/CS4SMB.2021.11.03.167   DOI