Browse > Article
http://dx.doi.org/10.22156/CS4SMB.2021.11.05.009

On Calculation of Total Power and Allocation for Achieving Near 1+1 Capacity Region of 2PAM NOMA in 5G Networks  

Chung, Kyuhyuk (Division of Software Science, Dankook University)
Publication Information
Journal of Convergence for Information Technology / v.11, no.5, 2021 , pp. 9-16 More about this Journal
Abstract
In binary-modulation non-orthogonal multiple access (NOMA), there has been rare researches for the 1+1 capacity region to be achieved; how much total power is required and what power allocation is assigned for this total power. In this paper, the average total transmitted power to achieve 1+1 capacity region of binary pulse amplitude modulation (2PAM) NOMA is investigated, with a tolerable loss. Then, based on the sufficient average total transmitted power, we calculate the power allocation coefficient to achieve 1+1 capacity region. Furthermore, it is shown by numerical results that with the tolerable loss less than 0.008, near 1+1 capacity region is achieved. We also calculate numerically the power allocation coefficient for both users to achieve near 1+1 capacity region. As a result, for 2PAM NOMA to operate near 1+1 capacity region, proper total power with appropriate power allocation could be calculated in design of NOMA systems.
Keywords
NOMA; 5G; Superposition coding; Successive interference cancellation; Power allocation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Z. Ding, Y. Liu, J. Choi, Q. Sun, M. Elkashlan, C.-L. I, & H. V. Poor. (2017). Application of non-orthogonal multiple access in LTE and 5G networks. IEEE Commun. Mag., 55(2), 185-191. DOI : 10.1109/MCOM.2017.1500657CM   DOI
2 L. Dai, B. Wang & Y. Yuan, S. Han, C.-L. I & Z. Wang. (2015). Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends. IEEE Commun. Mag., 53(9), 74-81. DOI : 10.1109/MCOM.2015.7263349   DOI
3 Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li & K. Higuchi. (2013). Non-orthogonal multiple access (NOMA) for cellular future radio access. In 2013 IEEE 77th vehicular technology conference (VTC Spring) (pp. 1-5). IEEE.
4 D. Wan, M. Wen, F. Ji, H. Yu & F. Chen. (2018). Non-orthogonal multiple access for cooperative communications: Challenges, opportunities, and trends. IEEE Wireless Commun., 25(2), 109-117. DOI : 10.1109/MWC.2018.1700134   DOI
5 T. Assaf, A. Al-Dweik, M. E. Moursi & H. Zeineldin. (2019). Exact BER Performance Analysis for Downlink NOMA Systems Over Nakagami-m Fading Channels. IEEE Access, 7, 134539-134555. DOI : 10.1109/ACCESS.2019.2942113   DOI
6 M. Aldababsa, C. Goztepe, G. K. Kurt & O. Kucur. (2020). Bit error rate for NOMA network. IEEE Commun. Lett., 24(6), 1188-1191 . DOI : 10.1109/LCOMM.2020.2981024   DOI
7 B. Makki. K. Chitti. A. Behravan & M. Alouini. (2020). A survey of NOMA: Current status and open research challenges. IEEE Open J. of the Commun. Society, 1, 179-189. DOI : 10.1109/OJCOMS.2020.2969899   DOI
8 K. Chung. (2020). A comparison of BER performance for receivers of NOMA in 5G mobile communication system. Journal of Convergence for Information Technology, 10(8), 7-14. DOI : 10.22156/CS4SMB.2020.10.8.007   DOI
9 E. M. Almohimmah & M. T. Alresheedi. (2020). Error analysis of NOMA-based VLC systems with higher order modulation schemes. IEEE Access, 8, 2792-2803. DOI : 10.1109/ACCESS.2019.2962331   DOI
10 L. Bariah, S. Muhaidat & A. Al-Dweik. (2019). Error Probability Analysis of Non-Orthogonal Multiple Access Over Nakagami-m Fading Channels. IEEE Trans. Commun., 67(2), 1586-1599. DOI : 10.1109/TCOMM.2018.2876867   DOI
11 K. Chung. (2021). NOMA for correlated information sources in 5G systems. IEEE Commun. Lett., 25(2), 422-426. DOI : 10.1109/LCOMM.2020.3027726   DOI
12 K. Chung. (2020). Impact of channel estimation errors on SIC performance of NOMA in 5G systems. Journal of Convergence for Information Technology, 10(9), 22-27. DOI : 10.22156/CS4SMB.2020.10.09.022   DOI
13 I. Lee & J. Kim. (2019). Average Symbol Error Rate Analysis for Non-Orthogonal Multiple Access With M-Ary QAM Signals in Rayleigh Fading Channels. IEEE Commun. Lett., 23(8), 1328-1331. DOI : 10.1109/LCOMM.2019.2921770   DOI
14 W. Wu. F. Zhou. R. Q. Hu & B. Wang. (2020). Energy-efficient resource allocation for secure NOMA-enabled mobile edge computing networks. IEEE Trans. Commun, 68(1), 493-505. DOI : 10.1109/TCOMM.2019.2949994   DOI
15 Z. Ding, & H. V. Poor. (2020). A simple design of IRS-NOMA transmission. IEEE Commun. Lett., 24(5), 1119-1123. DOI : 10.1109/LCOMM.2020.2974196   DOI
16 Y. Tian, X. Wang, Z. Wang, & Y. H. Kho. (2020). On the performance of mutual-aid NOMA strategy in cooperative networks. IEEE Commun. Lett., 24(2), 282-286. DOI : 10.1109/LCOMM.2019.2958073   DOI
17 Q. Wang, R. Zhang, L. L. Yang & L. Hanzo. (2018). Non-orthogonal multiple access: a unified perspective. IEEE Wirel. Commun., 25(2), 10-16. DOI : 10.1109/MWC.2018.1700070   DOI
18 A. A. A. Boulogeorg, N. D. Chatzidiamantis & G. K. Karagiannid. (2020). Non-orthogonal multiple access in the presence of phase noise. IEEE Commun. Lett., 24(5), 1133-1137. DOI : 10.1109/LCOMM.2020.2978845   DOI
19 R. M. Christopher & D. K. Borah. (2020). Physical layer security for weak user in MISO NOMA using directional modulation (NOMAD). IEEE Commun. Lett., 24(5), 956-960. DOI : 10.1109/LCOMM.2020.2975193   DOI
20 K. Chung. (2020). On design and performance analysis of asymmetric 2PAM: 5G network NOMA perspective. Journal of Convergence for Information Technology, 10(10), 24-31. DOI : 10.22156/CS4SMB.2020.10.10.024   DOI