Browse > Article
http://dx.doi.org/10.22156/CS4SMB.2021.11.04.111

Anti-obesity effects of Chrysanthemum indicum L. in C57BL/6 mice induced by high fat diet  

Choi, Jae Young (Division of Culinary Arts & Hotel Food Service-Major in Culinary, Yeonsung University)
Lee, Ja-bok (L.FOUNDER INC.)
Kim, Myeong-ok (KPC)
Publication Information
Journal of Convergence for Information Technology / v.11, no.4, 2021 , pp. 111-121 More about this Journal
Abstract
In order to determine the possibility that Chrysanthemum indicum L. cultured with Lactococcus lactis (CILL) is a material for obesity suppression food, the body weight, body fat mass, and T cells were determined in C57BL/6 mice induced by a high fat diet. The CILL (25.15±2.44 g) demonstrated weight loss from week 4 onward and maintained a low weight gain from week 1 to week 8 (1.00±0.53 g). The 8-week body weight (30.38±4.17 g) indicated loss of 13.15% when compared to the HFD (60% high fat diet, 34.99±2.09 g). Fat mass decreased to 10.3022±2.8813 g, and the absolute liver weight decreased relative to that in the HFD. CD4+ T cells were 4.84±1.33%, CD8+ T cells 7.02±2.26%, and CD4+CD8+ T cells 1.46±0.81%, which were all higher than those in the HFD. As a result, CILL can be used as a material for preventing obesity as an effective measure toward reducing weight when consumed orally.
Keywords
Chrysanthemum indicum L.; Culture; Anti-Obesity; Fat mass; T cell;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 L. H. Chen, Y. H. Chen, K. C. Cheng, T. Y. Chien, C. H. Chan, S. P. Tsao & H. Y. Huang. (2018). Antiobesity effect of Lactobacillus reuteri 263 associated with energy metabolism remodeling of white adipose tissue in high-energy-diet-fed rats. J Nutr Biochem, 54, 87-94. DOI : 10.1016/j.jnutbio.2017.11.004   DOI
2 J. Y. Choi, J. S. Lim, J. B. Lee & Y. H. Yang. (2020). Camphor inhibits adipocyte differentiation via its impact on SMO-dependent regulation of hedgehog signaling. Journal of Life Science, 30(11), 973-982. DOI : 10.5352/JLS.2020.30.11.973   DOI
3 J. Y. Choi, J. S. Lim, B. R. Sim & Y. H. Yang. (2020). Inhibitory effect of lactic acid bacteria-fermented Chrysanthemum indicum L. on adipocyte differentiation through hedgehog signaling. Journal of Life Science, 30(6), 532-541. DOI : 10.5352/JLS.2020.30.6.532   DOI
4 M. R. Lee, J. E. Kim, J. Y. Choi, J. J. Park, H. R. Kim, B. R. Song, Y. W. Choi, K. M. Kim, H. Song & D. Y. Hwang. (2019). Anti-obesity effect in high-fat-diet-induced obese C57BL/6 mice: Study of a novel extract from mulberry (Morus alba) leaves fermented with Cordyceps militaris. Exp Ther Med, 17(3), 2185-2193. DOI : 10.3892/etm.2019.7191   DOI
5 K. A. Oluyemi, I. O. Omotuyi, O. R. Jimoh, O. A. Adesanya, C. L. Saalu & S. J. Josiah. (2007). Erythropoietic and anti-obesity effects of Garcinia cambogia (bitter kola) in Wistar rats. Biotechnol Appl Biochem, 46(Pt 1), 69-72. DOI : 10.1042/BA20060105   DOI
6 A. Chauvat, N. Benhamouda, A. Gey, F. M. Lemoine, S. Paulie, F. Carrat, M. L. Gougeon, F. Rozenberg, A. Krivine, M. Cherai, P. t. Lehmann, F. Quintin-Colonna, O. Launay & E. Tartour. (2014). Clinical validation of IFNγ/IL-10 and IFNγ/IL-2 FluoroSpot assays for the detection of Tr1 T cells and influenza vaccine monitoring in humans. Hum Vaccin Immunother, 10(1), 104-113. DOI : 10.4161/hv.26593   DOI
7 K. V. Kandror. (2017). Mammalian target of rapamycin complex 1 and FoxO1 in the transcriptional control of lipolysis and de novo lipogenesis. Curr Opin in Endocrinol Diabetes Obes, 24(5), 326-331. DOI : 10.1097/MED.0000000000000352   DOI
8 S. H. Tan, G. Shui, J. Zhou, Y. Shi, J. Huang, D. Xia, M. R. Wenk & H. M. Shen. (2014). Critical role of SCD1 in autophagy regulation via lipogenesis and lipid rafts-coupled AKT-FOXO1 signaling pathway. Autophagy, 10(2), 226-242. DOI : 10.4161/auto.27003   DOI
9 S. Fabre, V. Lang, J. Harriague, A. Jobart, T. G. Unterman, A. Trautmann & G. Bismuth. (2005). Stable activation of phosphatidylinositol 3-kinase in the T cell immunological synapse stimulates Akt signaling to FoxO1 nuclear exclusion and cell growth control. J Immunol, 174(7), 4161-4171. DOI : 10.4049/jimmunol.174.7.4161   DOI
10 J. Ma, Y. Ding, X. Fang, R. Wang & Z. Sun. (2012). Protein kinase C-θ inhibits inducible regulatory T cell differentiation via an AKT-Foxo1/3a-dependent pathway. J Immunol, 188(11), 5337-5347. DOI : 10.4049/jimmunol.1102979   DOI
11 K. S. Park. (2015). Raspberry ketone, a naturally occurring phenolic compound, inhibits adipogenic and lipogenic gene expression in 3T3-L1 adipocytes. Pharm Biol, 53(6), 870-875. DOI : 10.3109/13880209.2014.946059   DOI
12 M. Saito, M. Ueno, S. Ogino, K. Kubo, J. Nagata & M. Takeuchi. (2005). High dose of Garcinia cambogia is effective in suppressing fat accumulation in developing male Zucker obese rats, but highly toxic to the testis. Food Chem Toxicol, 43(3), 411-419. DOI : 10.1016/j.fct.2004.11.008   DOI
13 J. Y. Cha, S. Nepali, H. Y. Lee, S. W. Hwang, S. Y. Choi, J. M. Yeon, B. J. Song, D. K. Kim & Y. M. Lee. (2018). Chrysanthemum indicum L. ethanol extract reduces high-fat diet-induced obesity in mice. Exp Ther Med, 15(6), 5070-5076. DOI : 10.3892/etm.2018.6042   DOI
14 S. Nepali, J. Y. Cha, H. H. Ki, H. Y. Lee, Y. H. Kim, D. K. Kim, B. J. Song & Y. M. Lee. (2018). Chrysanthemum indicum inhibits adipogenesis and activates the AMPK pathway in high-fat-diet-induced obese mice. Am J Chin Med, 46(1), 119-136. DOI : 10.1142/S0192415X18500076   DOI
15 Y. Xu, M. Zhang, T. Wu, S. D. Dai, J. Xu & Z. Zhou. (2015). The anti-obesity effect of green tea polysaccharide, polyphenols and caffeine in rats fed with a high-fat-diet. Food Funct, 6(1), 297-304. DOI : 10.1039/c4fo00970c.   DOI
16 T. Ohara, K. Muroyama, Y. Yamamoto & S. Murosaki. (2015). A combination of glucosyl hesperidin and caffeine exhibits an anti-obesity effect by inhibition of hepatic lipogenesis in mice. Phytother Res, 29(2), 310-316. DOI : 10.1002/ptr.5258   DOI
17 T. H. Park, Y. D. Kim, D. K. Kim & J. I. Park. (2001). Subject the effect of apolipoprotein E overexpression on plasma lipoprotein profile in mice fed on long-term high cholesterol diet. Korean Circ J, 31(9), 918-929. DOI : 10.4070/kcj.2001.31.9.918   DOI
18 W. Perini, M. B. Snijder, R. J. Peters, A. E. Kunst & I. G. van Valkengoed. (2019). Estimation of cardiovascular risk based on total cholesterol versus total cholesterol/high-density lipoprotein within different ethnic groups: The HELIUS study. Eur J Prev Cardiol, 26(17), 1888-1896. DOI : 10.1177/2047487319853354   DOI
19 Y. S. Lee, D. Y. Lee, D. Y. Kwon & O. H. Kang. (2020). Improvement effect of non-alcoholic fatty liver disease by Curcuma longa L. extract. Korean J Medicinal Crop Sci, 28(4), 276-286. DOI : 10.7783/kjmcs.2020.28.4.276   DOI
20 S. R. Kim & S. H. Nam. (2020). Association between periodontal disease and levels of triglyceride and total cholesterol among Korean adults. Healthcare (Basel), 8(3), 337. DOI : 10.3390/healthcare8030337   DOI
21 H. Zwickl, K. Hackner, H. Kofeler, E. C. Krzizek, B. Muqaku, D. Pils, H. Scharnagl, T. S. Solheim, E. Zwickl-Traxler & M. Pecherstorfer. (2020). Reduced LDL-cholesterol and reduced total cholesterol as potential indicators of early cancer in male treatment-naive cancer patients with pre-cachexia and cachexia. Front Oncol, 10, 1262. DOI : 10.3389/fonc.2020.01262   DOI
22 Y. Liang, D. L. Vetrano & C. Qiu. (2017). Serum total cholesterol and risk of cardiovascular and non-cardiovascular mortality in old age: A population-based study. BMC Geriatr, 17(1), 294. DOI : 10.1186/s12877-017-0685-z   DOI
23 W. Janssens, V. Carlier, B. Wu, L. VanderElst, M. G. Jacquemin & J. M. Saint-Remy. (2003). CD4+CD25+ T cells lyse antigen-presenting B cells by Fas-Fas ligand interaction in an epitope-specific manner. J Immunol, 171(9), 4604-4612. DOI : 10.4049/jimmunol.171.9.4604   DOI
24 L. Xiao, X. Yang, Y. Lin, S. Li, J. Jiang, S. Qian, Q. Tang, R. He & X. Li. (2016). Large adipocytes function as antigen-presenting cells to activate CD4(+) T cells via upregulating MHCII in obesity. Int J Obes (Lond), 40(1), 112-120. DOI : 10.1038/ijo.2015.145   DOI
25 M. Park & S. Y. Woo. (2016). Inflammation in Obesity. J Bacteriol Virol, 46(4). DOI : 10.4167/jbv.2016.46.4.343   DOI
26 Y. C. Chooi, C. Ding & F. Magkos. (2019). The epidemiology of obesity. Metabolism, 92, 6-10. DOI : 10.1016/j.metabol.2018.09.005   DOI
27 S. Kahan & J. E. Manson. (2019). Obesity treatment, beyond the guidelines: Practical suggestions for clinical practice. JAMA, 321(14), 1349-1350. DOI : 10.1001/jama.2019.2352   DOI
28 M. Rubinstein & M. J. Low. (2017). Molecular and functional genetics of the proopiomelanocortin gene, food intake regulation and obesity. FEBS Lett, 591(17), 2593-2606. DOI : 10.1002/1873-3468.12776   DOI
29 H. Y. Lee, R. H. Kang, S. H. Cho, S. S. Kim & Y. S. Kim. (2009). Effects of platycodin D on gene expressions of pro-adipogenic and anti-adipogenic regulators in 3T3-L1 cells. Journal of Life Science, 19(12), 1802-1807. DOI : 10.5352/JLS.2009.19.12.1802   DOI
30 E. D. Rosen & O. A. MacDougald. (2006). Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol, 7(12), 885-896. DOI : 10.1038/nrm2066   DOI
31 A. C. Skinner, M. J. Steiner, F. W. Henderson & E. M. Perrin. (2010). Multiple markers of inflammation and weight status: Cross-sectional analyses throughout childhood. Pediatrics, 125(4), e801-809. DOI : 10.1542/peds.2009-2182   DOI
32 A. L. de la Garza, F. I. Milagro, N. Boque, J. Campion & J. A. Martinez. (2011). Natural inhibitors of pancreatic lipase as new players in obesity treatment. Planta Med, 77(8), 773-785. DOI : 10.1055/s-0030-1270924   DOI
33 J. Yin, H. Zhang & J. Ye. (2008). Traditional Chinese medicine in treatment of metabolic syndrome. Endocr Metab Immune Disord Drug Targets, 8(2), 99-111. DOI : 10.2174/187153008784534330   DOI
34 L. C. Lew, S. B. Choi, B. Y. Khoo, S. Sreenivasan, K. L. Ong & M. T. Liong. (2018). Lactobacillus plantarum DR7 Reduces cholesterol via phosphorylation of AMPK that down-regulated the mRNA expression of HMG-CoA reductase. Korean J Food Sci of Anim Resour, 38(2), 350-361. DOI : 10.5851/kosfa.2018.38.2.350   DOI