Browse > Article
http://dx.doi.org/10.22156/CS4SMB.2021.11.11.159

Three-Dimensional Selective Oxidation Fin Channel MOSFET Based on Bulk Silicon Wafer  

Cho, Young-Kyun (Division of Electrical, Electronic and Control Engineering, Kongju National University)
Nam, Jae-Won (Department of Electronic Engineering, SeoulTech)
Publication Information
Journal of Convergence for Information Technology / v.11, no.11, 2021 , pp. 159-165 More about this Journal
Abstract
A fin channel with a fin width of 20 nm and a gradually increased source/drain extension regions are fabricated on a bulk silicon wafer by using a three-dimensional selective oxidation. The detailed process steps to fabricate the proposed fin channel are explained. We are demonstrating their preliminary characteristics and properties compared with those of the conventional fin field effect transistor device (FinFET) and the bulk FinFET device via three-dimensional device simulation. Compared to control devices, the three-dimensional selective oxidation fin channel MOSFET shows a higher linear transconductance, larger drive current, and lower series resistance with nearly the same scaling-down characteristics.
Keywords
SoxFET; FinFET; Bulk FinFET; Raised Source/Drain; Series resistance; Recess channel;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. T. Chuang, P. F. Lu & C. J. Anderson. (1998). SOI for Digital CMOS VLSI: Design Considerations and Advances, Proc. IEEE, 86(4), 689-720. DOI : 10.1109/5.663545   DOI
2 A. Gupta, R. A. Vega, T. B. Hook & A. Dixit. (2020). Impact of Hot-Carrier Degradation on Drain-Induced Barrier Lowering in Multifin SOI n-Channel FinFETs With Self-Heating. IEEE Trans. Electron Dev., 67(5), 2208-2212. DOI : 10.1109/TED.2020.2977734   DOI
3 K. Asano, Y. K. Choi, T. J. King & C. Hu. (2001). Patterning Sub-30-nm MOSFET Gate with I-Line Lithography, IEEE Trans. Electron Dev., 48(5), 1004-1006. DOI : 10.1109/16.918251   DOI
4 Y. K. Choi, T. J. King & C. Hu. (2002). A Spacer Patterning Technology for Nanoscale CMOS, IEEE Trans. Electron Dev., 49(3), 436-441. DOI : 10.1109/16.987114   DOI
5 Y. K. Choi, D. Ha, T. J. King & C. Hu. (2001). Nanoscale Ultrathin Body PMOSFETs With Raised Selective Germanium Source/Drain, IEEE Electron Dev. Lett., 22(9), 447-448. DOI : 10.1109/55.944335   DOI
6 M. Chan, F. Assaderaghi, S. A. Parke, C. Hu & P. K. Ko. (1994). Recessed-Channel Structure for Fabricating Ultrathin SOI MOSFET with Low Series Resistance, IEEE Electron Dev. Lett., 15(1), 22-24. DOI : 10.1109/55.289474   DOI
7 J. Kedzierski, P. Xuan, E. Anderson, J. Bokor, T. J. King & C. Hu. (2000). Complementary silicide source/drain thin-body MOSFETs for the 20nm gate length regime, Int. Electron Dev. Meeting, 57-61. DOI : 10.1109/IEDM.2000.904258   DOI
8 P. Cadareanu, J. Romero-Gonzalez & P. E. Gaillardon. (2021). Parasitic Capacitance Analysis of Three-Independent-Gate Field-Effect Transistors, IEEE Journal of the Electron Devices Society, 9, 400-408. DOI : 10.1109/JEDS.2021.3070475   DOI
9 Y. K. Choi et al. (2001). Sub-20nm CMOS FinFET Technologies, Int. Electron Dev. Meeting, 421-424. DOI : 10.1109/IEDM.2001.979526   DOI
10 T. S. Park, H. J. Cho, J. D. Choe, D. Park, E. Yoon & J. H. Lee. (2004). Threshold Voltage Behavior of Body-Tied FinFET (OMEGA MOSFET) with Respect to Ion Implantation Conditions, Jpn. J. Appl. Phys., 43(4B), 2180-2184. DOI : 10.1143/JJAP.43.2180   DOI
11 C. H. Park, M. H. Oh, H. S. Kang & H. K. Kang. (2004). A 15 nm Ultra-thin Body SOI CMOS Device with Double Raised Source/Drain for 90 nm Analog Applications, ETRI Journal, 26(6), 575-582. DOI : 10.4218/etrij.04.0104.0074   DOI
12 Y. K. Cho, T. Roh & J. Kim. (2005). SoxFET: Three-Dimensional Selective Oxidation Channel MOSFET, Int. Microprocesses and Nanotechnology Conference, 266-267. DOI : 10.1109/IMNC.2005.203840   DOI
13 A. M. Waite et. al. (2005). Raised source/ drains for 50 nm MOSFETs using a silane/dichlorosilane mixture for selective epitaxy, Solid-State Electronics, 49, 529-534. DOI : 10.1016/j.sse.2005.01.019   DOI
14 H. J. Huang, K. M. Chen, C. Y. Chang, L. P. Chen, G. W. Huang & T. Y. Huang (2000). Reduction of Source/Drain Series Resistance and Its Impact on Device Performance for PMOS Transistors with Raised Si1-xGex Source/Drain, IEEE Electron Dev. Lett., 21(9), 448-450. DOI : 10.1109/55.863107   DOI
15 A. Kumar, P. S. T. N. Srinivas & P. K. Tiwari. (2019). An Insight Into Self-Heating Effects and Its Implications on Hot Carrier Degradation for Silicon-Nanotube-Based Double Gate-All-Around (DGAA) MOSFETs, IEEE J. Electron Dev. Society, 7, 1100-1108. DOI : 10.1109/JEDS.2019.2947604   DOI
16 O. Faynot & B. Giffard. (1994). High Performance Ultrathin SOI MOSFET's Obtained by Localized Oxidation, IEEE Electron Dev. Lett., 15(5), 175-177. DOI : 10.1109/55.291595   DOI
17 Y. Taur & T. H. Ning. (1998). CMOS DEVICE DESIGN: Fundamentals of Modern VLSI Devices : Cambridge Univ. Press. DOI : 10.1017/CBO9781139195065   DOI
18 S. Nanda & R. S. Dhar. (2021). Implementation and Characterization of 14 nm Trigate HOI n-FinFET using Strained Silicon channel with reduced area on chip, 6th International Conference for Convergence in Technology, 1-4. DOI : 10.1109/I2CT51068.2021.9417877   DOI