Browse > Article
http://dx.doi.org/10.22156/CS4SMB.2020.10.09.028

Optical and electrical properties of AZO thin films deposited on OHP films  

Kim, Kyoung-Bo (Department of Metallurgical and Materials Engineering, Inha Technical College)
Lee, Jongpil (Department of Electrical and Electronic Engineering, Jungwon University)
Kim, Moojin (Department of IoT Electronic Engineering, Kangnam University)
Publication Information
Journal of Convergence for Information Technology / v.10, no.9, 2020 , pp. 28-34 More about this Journal
Abstract
In this paper, an optical sensor based on an AZO semiconductor material is fabricated on an OHP film with high transmittance, and the characteristics of the optical element and the properties of the semiconductor material are described. In order to realize a flexible optical device, which is a major issue in the field of near-electronic devices, a transparent and bendable OHP film was used as a substrate. In addition, ITO, which is used for mass production as a transparent electrode and a semiconductor material, is expensive due to the scarcity of indium. Therefore, it is necessary to find a material that can replace it. The optical and electrical properties of the Au/Al/AZO/OHP structure are implemented to evaluate whether AZO is possible. It was found that devices and materials had no characteristic change by bending, and these results provide a possibility for application to a next-generation device. However, it is necessary to remove fine scratches on the surface of the OHP film, as well as optimized devices based on materials and structures that can improve the photocurrent.
Keywords
Transparent OHP film; AZO; Optical sensor; Transparent electronde; Bending property;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Y. Leprince-Wang. (2014). Au Schottky junction with electrodeposited ZnO thin films and nanowires. The European Physical Journal Applied Physics, 68(1), 10401. DOI : 10.1051/epjap/2014140211   DOI
2 J. I. Lee, S. Lee, H. M. Oh, B. R. Cho, K. H. Seo & M. Y. Kim (2020). 3D Contact Position Estimation of Image-Based Areal Soft Tactile Sensor with Printed Array Markers and Image Sensors. Sensors, 20(13), 3796. DOI : 10.3390/s20133796   DOI
3 A. Inoue, T. Okino, S. Koyama & Y. Hirose. (2020). Modeling and Analysis of Capacitive Relaxation Quenching in a Single Photon Avalanche Diode (SPAD) Applied to a CMOS Image Sensor. Sensors, 20(10), 3007. DOI : 10.3390/s20103007   DOI
4 B. Xie, R. Xie, K. Zhang, Q. Yin, Z. Hu, G. Yu, F. Huang & Y. Cao. (2020). Self-filtering narrowband high performance organic photodetectors enabled by manipulating localized Frenkel exciton dissociation. Nature Communications, 11(2871), 1-9. DOI : 10.1038/s41467-020-16675-x   DOI
5 M. Roslina & M. R. Mokhtar. (2020). Self-referencing optical intensity sensor based on radio-frequency spectrum interrogation, Optical Fiber Technology, 53, 102009. DOI : 10.1016/j.yofte.2019.102009
6 X. Wang, W. Xu, Izhar & Y.-K. Lee. (2020). Theoretical and Experimental Study and Compensation for Temperature Drifts of Micro Thermal Convective Accelerometer. Journal of Microelectromechanical Systems, 29(3), 277-284. DOI : 10.1109/JMEMS.2020.2977950   DOI
7 S. Ahmed, X. Zou, N. Jaber, M. I. Younis & H. Fariborzi. (2020). A Low Power Micro-Electromechanical Resonator-Based Digital to Analog Converter. Journal of Microelectromechanical Systems, 29(3), 320-328. DOI : 10.1109/JMEMS.2020.2988790   DOI
8 S. C. Dixon, D. O. Scanlon, C. J. Carmalt & I. P. Parkin. (2016). n-Type doped transparent conducting binary oxides: an overview. Journal of Materials Chemistry C, 4, 6946-6961. DOI : 10.1039/C6TC01881E   DOI
9 Y. Fang, D. Commandeur, W. C. Lee & Q. Chen. (2020). Transparent conductive oxides in photoanodes for solar water oxidation. Nanoscale Advances, 2, 626-632. DOI : 10.1039/C9NA00700H   DOI
10 M. Esro, S. Georgakopoulos, H. Lu, G. Vourlias, A. Krier, W. I. Milne, W. P. Gillin & G. Adamopoulos. (2016). Solution processed SnO2:Sb transparent conductive oxide as an alternative to indium tin oxide for applications in organic light emitting diodes. Journal of Materials Chemistry C, 4, 3563-3570. DOI : 10.1039/C5TC04117A   DOI
11 Y. Li, M. Wu, Y. Sun & S. Yu (2019). High-performance flexible transparent conductive thin films on PET substrates with a CuM/AZO structure. Journal of Materials Science: Materials in Electronics, 30, 13271-13279. DOI : 10.1007/s10854-019-01690-6   DOI
12 H.-L. Shen, H. Zhang, L-F Lu, F. Jiang & C. Yang (2010). Preparation and properties of AZO thin films on different substrates. Progress in Natural Science: Materials International, 20, 44-48. DOI : 10.1016/S1002-0071(12)60005-7   DOI
13 X. Gao, L. Lin, Y. Liu & X. Huang. (2015). LTPS TFT Process on Polyimide Substrate for Flexible AMOLED. Journal of Display Technology, 11(8), 666-669.   DOI
14 K. B. Kim, J. P. Lee, M. J. Kim & Y. S. Min. (2019). Trend of Crystallization Technology and Large Scale Research for Fabricating Thin Film Transistors of AMOLED Displays. Journal of Convergence for Information Technology, 9(5), 117-124. DOI : 10.22156/CS4SMB.2019.9.5.117   DOI
15 H. Khachatryan, S. N. Lee, K. B. Kim, H. K. Kim & M. J. Kim. (2018). Al thin film: The effect of substrate type on Al film formation and morphology. Journal of Physics and Chemistry of Solids, 122, 109-117. DOI : 10.1016/j.jpcs.2018.06.018   DOI
16 K. B. Kim, J. P. Lee, M. J. Kim & Y. S. Min. (2019). Characteristics of Excimer Laser-Annealed Polycrystalline Silicon on Polymer layers. Journal of Convergence for Information Technology, 9(3), 75-81. DOI : 10.22156/CS4SMB.2019.9.3.075   DOI
17 H. Khachatryan, S. N. Lee, K. B. Kim & M. J. Kim (2019). Deposition of Al Thin Film on Steel Substrate: The Role of Thickness on Crystallization and Grain Growth. Metals, 9(12), 1-8. DOI : 10.3390/met9010012