Browse > Article
http://dx.doi.org/10.22156/CS4SMB.2019.9.5.172

The Effect of Trunk Control Training Using Virtual Reality Game-based Training Program on Balance and Upper Extremity Function of Subacute Stroke Patients  

Park, Sam-Ho (Dept. of Physical Therapy, Graduate School, Daejeon University)
Kim, Byeong-Soo (Dept. of Physical Therapy, Graduate School, Daejeon University)
Lee, Myung-Mo (Dept. of Physical Therapy, College of Health & Medical Science, Daejeon University)
Publication Information
Journal of Convergence for Information Technology / v.9, no.5, 2019 , pp. 172-179 More about this Journal
Abstract
The purpose of this study was to investigate the effects of virtual reality game based training on balance and upper limb function in subacute stroke patients. Thirty patients with subacute stroke were randomly assigned to experimental groups(n=15) and control groups(n=15) applying virtual reality game-based training programs. Intervention is applied three times a week for 6 weeks, 30 minutes for 1 time. In the study group, there was a significant improvement in balance ability, upper extremity function, and trunk impairment scale(p<.05), and the difference between the two groups was significant in the BBS, TUG, TIS(p<.05). Based on these results, the virtual reality game based training program is clinically useful exercise program for subacute stroke patients.
Keywords
Virtual reality; Stroke; Upper extremity function; Balance; Game; Rehabilitation;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 T. Ikai, T. Kamikubo, I. Takehara, M. Nishi & S. Miyano. (2003). Dynamic postural control in patients with hemiparesis. American journal of physical medicine & rehabilitation, 82(6), 463-469.   DOI
2 S. H. You, S. H. Jang, Y. H. Kim, M. Hallett, S. H. Ahn, Y. H. Kwon & M. Y. Lee. (2005). Virtual reality-induced cortical reorganization and associated locomotor recovery in chronic stroke: an experimenter-blind randomized study. Stroke, 36(6), 1166-1171.   DOI
3 G. J. Lehman, T. Gordon, J. Langley, P. Pemrose & S. Tregaskis. (2005). Replacing a Swiss ball for an exercise bench causes variable changes in trunk muscle activity during upper limb strength exercises. Dynamic Medicine, 4(1), 6.   DOI
4 S. H. Yu & S. D. Park. (2013). The effects of core stability strength exercise on muscle activity and trunk impairment scale in stroke patients. Journal of exercise rehabilitation, 9(3), 362.   DOI
5 G. B. Song & E. C. Park. (2016). Comparison of the Effects of Task-oriented training and Virtual reality training on upper extremity function, balance ability, and depression in stroke patients. Journal Korean Society of Physical Medicine, 11(1), 115-125.   DOI
6 C. M. Dean, E. F. Channon & J. M. Hall. (2007). Sitting training early after stroke improves sitting ability and quality and carries over to standing up but not to walking: a randomised controlled trial. Australian Journal of Physiotherapy, 53(2), 97-102.   DOI
7 A. Shumway-Cook. & M. H. Woollacott. (2007). Motor control: translating research into clinical practice. Lippincott Williams & Wilkins.
8 L. Wolfson, R. Whipple, C. A. Derby, P. Amerman & L. Nashner. (1994). Gender differences in the balance of healthy elderly as demonstrated by dynamic posturography. Journal of Gerontology, 49(4), M160-M167.   DOI
9 L. Ada., S. Dorsch & C. G. Canning. (2006). Strengthening interventions increase strength and improve activity after stroke: a systematic review. Australian Journal of Physiotherapy, 52(4), 241-248.   DOI
10 C. J. Newsam & L. L. Baker. (2004). Effect of an electric stimulation facilitation program on quadriceps motor unit recruitment after stroke. Archives of physical medicine and rehabilitation, 85(12), 2040-2045.   DOI
11 W. J. Hwang, M. K. Cho & Y. Chung. (2015). Relationship between anticipatory postural adjustment of the trunk, dual tasks and physical performance with chronic stroke survivors: a pilot test. Physical Therapy Rehabilitation Science, 4(1), 44-48.   DOI
12 B. French, L. H. Thomas, J. Coupe, N. E. McMahon, L. Connell, J. Harrison & C. L. Watkins. (2016). Repetitive task training for improving functional ability after stroke. Cochrane database of systematic reviews, (11).
13 G. C. Burdea. (2003). Virtual rehabilitation-benefits and challenges. Methods of information in medicine, 42(05), 519-523.   DOI
14 B. M. Quaney, J. He, G. Timberlake, K. Dodd & C. Carr. (2010). Visuomotor training improves stroke-related ipsilesional upper extremity impairments. Neurorehabilitation and neural repair, 24(1), 52-61.   DOI
15 S. M. Michaelsen, R. Dannenbaum & M. F. Levin. (2006). Task-specific training with trunk restraint on arm recovery in stroke: randomized control trial. Stroke, 37(1), 186-192.   DOI
16 S. J. Page. P. Levine & A. C. Leonard. (2005). Modified constraint-induced therapy in acute stroke: a randomized controlled pilot study. Neurorehabilitation and neural repair, 19(1), 27-32.   DOI
17 J. E. Deutsch, A. S. Merians, S. Adamovich, H. Poizner & G. C. Burdea. (2004). Development and application of virtual reality technology to improve hand use and gait of individuals post-stroke. Restorative neurology and neuroscience, 22(3-5), 371-386.
18 R. B. Rosenberg-Kima & A. Sadeh. (2010). Attention, response inhibition, and face-information processing in children: The role of task characteristics, age, and gender. Child Neuropsychology, 16(4), 388-404.   DOI
19 S. J. Lee & M. H. Chun. (2014). Combination transcranial direct current stimulation and virtual reality therapy for upper extremity training in patients with subacute stroke. Archives of physical medicine and rehabilitation, 95(3), 431-438.   DOI
20 S. Downs, J. Marquez & P. Chiarelli. (2013). The Berg Balance Scale has high intra-and inter-rater reliability but absolute reliability varies across the scale: a systematic review. Journal of physiotherapy, 59(2), 93-99.   DOI
21 M. Katz-Leurer, I. Fisher, M. Neeb, I. Schwartz & E. Carmeli. (2009). Reliability and validity of the modified functional reach test at the sub-acute stage post-stroke. Disability and rehabilitation, 31(3), 243-248.   DOI
22 G. I. Yatar & S. A. Yildirim. (2015). Wii Fit balance training or progressive balance training in patients with chronic stroke: a randomised controlled trial. Journal of Physical Therapy Science, 27(4), 1145-1151.   DOI
23 D. Podsiadlo & S. Richardson. (1991). The timed "Up & Go": a test of basic functional mobility for frail elderly persons. Journal of the American geriatrics Society, 39(2), 142-148.   DOI
24 A. R. Fugl-Meyer, L. Jaasko, I. Leyman, S. Olsson & S. Steglind. (1975). The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scandinavian journal of rehabilitation medicine, 7(1), 13-31.
25 H. Kim, J. Her, J. Ko, D. S. Park. J. H. Woo, Y. You & Y. Choi. (2012). Reliability, concurrent validity, and responsiveness of the Fugl-Meyer Assessment (FMA) for hemiplegic patients. Journal of Physical Therapy Science, 24(9), 893-899.   DOI
26 G. Verheyden, A. Nieuwboer, A. Van de Winckel & W. De Weerdt. (2007). Clinical tools to measure trunk performance after stroke: a systematic review of the literature. Clinical rehabilitation, 21(5), 387-394.   DOI
27 Y. R. Yang, Y. H. Chen, H. C. Chang, R. C. Chan, S. H. Wei & R. Y. Wang. (2015). Effects of interactive visual feedback training on post-stroke pusher syndrome: a pilot randomized controlled study. Clinical rehabilitation, 29(10), 987-993.   DOI
28 A. L. Betker, A. Desai, C. Nett., N. Kapadia & T. Szturm. (2007). Game-based exercises for dynamic short-sitting balance rehabilitation of people with chronic spinal cord and traumatic brain injuries. Physical therapy, 87(10), 1389-1398.   DOI
29 G. S. Sim. & H. S. Jeon. (2017). Comparison of the Effects of Wii Balance Games and Mirror Self-Balancing Exercises on Knee Joint Proprioception and Balance in Chronic Stroke Patients. Physical Therapy Korea, 24(1), 30-40.   DOI
30 S. B. O'Sullivan. & T. J. Schmitz. (1994). Physical rehabilitation: ssessment and treatment: FA Davis.a
31 F. M. Campbell, A. M. Ashburn, R. M. Pickering & M. Burnett. (2001). Head and pelvic movements during a dynamic reaching task in sitting: implications for physical therapists. Archives of physical medicine and rehabilitation, 82(12), 1655-1660.   DOI
32 G. Saposnik, R. Teasell, M. Mamdani, J. Hall, W. McIlroy, D. Cheung & M. Bayley. (2010). Effectiveness of virtual reality using Wii gaming technology in stroke rehabilitation: a pilot randomized clinical trial and proof of principle. Stroke, 41(7), 1477-1484.   DOI