Browse > Article
http://dx.doi.org/10.5515/KJKIEES.2011.22.9.840

RCS Characteristic of Electromagnetic Gradient Surface Due to Incident Angle and Polarization  

Lim, Yo-Han (Department of Electronic Engineering, Yonsei University)
Kim, Young-Sub (Department of Electronic Engineering, Yonsei University)
Yoon, Young-Joong (Department of Electronic Engineering, Yonsei University)
Publication Information
Abstract
In this paper, reflection and RCS characteristic of the EGS(Electromagnetic Gradient Surface) due to incident angle and polarization is analyzed. Incident angle, ${\theta}_i$, is rotated from $0^{\circ}$ to $50^{\circ}$ with $10^{\circ}$ steps and perpendicular and parallel polarization of incident wave are also considered each incident angle. Reflection and RCS characteristic is not much affected by variation of polarization for normal incidence(${\theta}_i=0^{\circ}$). Reflection pattern has different characteristic due to variation of incident angle and polarization but the EGS has about 2 dB of RCS difference due to polarization in RCS characteristic.
Keywords
Electromagnetic Gradient Surface; RCS; Reflectin Phase; Polarization;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 K. Chang, J. Ahn, and Y. J. Yoon, "Oblique incidence on electromagnetic gradient surface, Institution of Engineering and Technology, vol. 4, issue. 10, pp. 1575-1582, Oct. 2010.
2 M. Cherniakov, "Space-surface bistatic synthetic aperture radar-prospective and problems", Proc. RADAR 2002 Conference, Edinburgh, UK, no. 490, pp. 22- 26, Oct. 2002.
3 이성준, 최인식, "모노스태틱 RCS와 바이스태틱 RCS의 표적 구분 성능 분석", 한국전자파학회논문지, 21(12), pp. 1460-1466, 2010년 12월.   과학기술학회마을   DOI   ScienceOn
4 E. Yablonovitch, "Photonic crystals", J. Modern Opt., 41(2), pp. 173-194, 1994.   DOI
5 D. Sievenpiper, "High-impedance electromagnetic surfaces", Ph. D. Dissertation, Department of Electrical Engineering, Univ. Califonia, Los Angeles, CA, 1999.
6 D. Sievenpiper, L. Zhang, R. F. J. Bros, N. G. Alexopolus, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band", IEEE Trans. Microw. Theory Tech., vol. 47, pp. 2059-2074, Nov. 1999.   DOI
7 D. Schurig, J. J. Mock, B. J. Justice, and A. Et., "Metamaterial electromagnetic cloak at microwave frequencies", Science, pp. 977-980, 2006.
8 M. Paquay, J. C. Iriarte, I. Ederra, R. Gonzalo, and P. de Maagt, "Thin AMC structure for radar cross- section reduction", IEEETrans. Antennas Propag., vol. 55, no. 12, pp. 3630-3638, 2007.   DOI
9 Yong Zhang, R. Mittra, and Bing-Zhong Wang, "Novel design for low-RCS screens using a combination of dual-AMC", APSURI2009, pp. 1-4, Jun. 2009.
10 K. Chang, J. Ahn, and Y. J. Yoon, "High-impedance surface with nonidentical lattices", IEEE International Workshop on Antenna Technology, Small Antennas and Novel Metamaterials, pp. 474-477, Mar. 2008.   DOI
11 K. Chang, "Electromagnetic gradient surface and its application to flat reflector antennas", Ph.D. Dissertation, Department of Electrical and Electronic Engineering, Yonsei University, South Korea, 2009.
12 석성하 외, "RCS 관련 기술(1) : RCS 예측 및 측정", 98 전자파학회 춘계마이크로파학술대회, 21 (1), 1998 5월.
13 J. I. Glaser, "Some results in the bistatic radar cross section of complex objects", Proceedings of the IEEE, vol. 77, no. 5, pp. 639-648, May 1989.   DOI
14 P. A. Lees, M. R. Davies, "Computer prediction of RCS for military targets", IEEE Proceedings, vol. 37, no. 4, Aug. 1990.
15 J. M. Rius, M. Ferrando, and L. Jofre, "GRECO: Graphical electromagnetic computing for RCS prediction in real time", IEEE AP. Magazine, vol. 35, no. 2, Apr. 1993.   DOI
16 M. Cherniakov, Bistatic Radar: Principles and Practice, John Wiley & Sons Ltd., 2007.