Browse > Article
http://dx.doi.org/10.5515/KJKIEES.2010.21.2.152

Design of Cavity-Backed High Gain Dual Band Microstrip Antenna Using Frequency Selective Surface  

Kim, Byoung-Chul (School of Electrical and Computer Engineering, Ajou University)
Choo, Ho-Sung (School of Electronics and Electrical Engineering, Hongik University)
Park, Ik-Mo (School of Electrical and Computer Engineering, Ajou University)
Publication Information
Abstract
In this paper, a cavity-backed high gain dual band microstrip antenna with Frequency Selective Surface space(FSS) for WLAN is proposed. The proposed antenna that operates in IEEE 802.11a/b bands with similar radiation pattern and gain is fabricated on RO4003 substrate with a dielectric constant of 3.38. The size of the antenna is $71.5{\times}42.0{\times}6.6\;mm^3$, and the FSS size is $120.0{\times}120.02\;mm^3$. The ground plane size including cavity is $150.0{\times}145.0\;mm^3$. The antenna is fed by coaxial cable. The simulated bandwidths of the antenna are 2.369~2.517 GHz and 5.608~5.833 GHz for VSWR<2. The gains are 11.23 dBi and 12.60 dBi, respectively, for the lower and upper bands.
Keywords
Satellite Internet Service; WLAN; Dual Band Antenna; Microstrip Antenna; Frequency Selective Surface; Particle Swarm Optimization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. S. Elmezughi, W. S. T. Rowe, and R. B. Waterhouse, "Further investigations into edge-fed cavity backed patches", in Proc. IEEE Antenna and Propagat. Soc. Int. Symp., pp. 920-923, 2007.   DOI
2 Minh Tuan Ngyuen, Byoungchul Kim, Hosung Choo, and Ikmo Park, "Effects of a cavity structure on a square microstrip patch antenna built on a low-permittivity substrate with an air gap", 종합학술발표회논문집, 한국전자파학회, 19(1), p. 55, 2009년 11월.
3 Y. J. Lee, J. Yeo, R. Mittra, and W. S. Park, "Design of frequency selective surface(FSS) type superstrate for dual-band directivity enhancement of microstrip patch antenna", in Proc. IEEE Antenna and Propagat. Soc. Int. Symp., vol. 3, pp. 2-5, 2005.   DOI
4 Z. Ge, W. Zhang, Z. Liu, and Y. Gu, "Broadband and high-gain printed antennas constructed from Fabry-Perot resonator structure using EBG or FSS cover", Microwave and Optical Technol. Lett., vol. 48, pp. 1272-1274, 2006.   DOI
5 G. V. Trentini, "Partially reflecting sheet arrays", IRE Trans. Antennas Propagat., vol. 4. pp. 666-671, 1956.   DOI
6 J. R. James, S. J. A. Kinany, P. D. Peel, and G. Andrasic, "Leaky-wave multiple dichroic beamformers", Electron. Lett., vol. 25, 1989.
7 J. Kennedy, R. Eberhart, "Particle swarm optimization", in Proc. IEEE Neural Networks (perth, Australia), vol. 4, pp. 1942-1948. 1995.
8 J. Kennedy, R. Eberhart, "A discrete binary version of the particle swarm algorithm", in Proc. Syst., Man, and Cyber., vol. 5, pp. 4104-4108, 1997.
9 J. Robinson, Y. Rahmat-Samii, "Particle swarm optimization in electromagnetics", IEEE Trans. Antennas Propagat., vol. 52, pp. 397-407, 2004.   DOI
10 F. Yang, Y. Rahmat-Samii, "Step-like structure and EBG structure to improve the performance of patch antennas on high dielectrics substrate", in Proc. IEEE Antennas Propagat. Soc. Int. Symp., vol. 2, pp. 482-485, 2001.   DOI
11 R. L. Li, G. DeJean, M. M. Tentzeris, J. Laskar, and J. Papapolymerou, "LTCC multilayer based CP patch antenna surrounded by a soft-and-hard surface for GPS applications", in Proc. IEEE Antenna and Propagat. Soc. Int. Symp., vol. 2, pp. 651-654, 2003.   DOI
12 Y. Rahmat-Samii, "The marvels of electromagnetic bandgap(EBG) structures: Novel microwave and optical applications", in Proc. 2003 SBMO/IEEE MTTS IMOC 2003, vol. 1, pp. 265-275, 2003.   DOI
13 D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band", IEEE Trans. Microwave Theory Tech., vol. 47, pp. 2059-2074, 1999.   DOI
14 Y. L. R. Lee, A. Chauraya, D. S. Lockyer, and J. C. Vardaxoglou, "Dipole and tripole metallodielectric photonic bandgap(MPBG) structures for microwave filter and antenna applications", IEE Proc. Optoelectron., vol. 147, pp. 395-400, 2000.   DOI
15 R. Li, G. DeJean, M. M. Tentzeris, J. Papapolymerou, and J. Laskar, "Radiation-pattern improvement of patch antenna on a large-size substrate using a compact soft-surface structure and its realization on LTCC multilayer technology", IEEE Trans. Antennas Propagat., vol. 53, pp. 200-208, 2005.   DOI
16 S. W. Su, K. L. Wong, Y. T. Cheng, and W. S. Chen, "High-gain broadband patch antenna with a cavity ground for 5-GHz WLAN operation", Microwave Optical Technol. Lett., vol. 41, pp. 397-399, 2004.   DOI
17 W. S. T. Rowe, R. B. Waterhouse, "Investigation of edge-fed cavity backed patches and arrays", in Proc. IEEE Antenna and Propagat. Soc. Int. Symp., pp. 3967-3970, 2006.   DOI
18 J. G. Ryu, S. M. Han, M. S. Shin, D. I. Chang, and H. J. Lee, "The gap filler technology for mobile satellite system", Advanced Satellite Mobile Systems, pp. 333-336, 2008.
19 H. J. Lee, P. S. Kim, T. H. Kim, and D. G. Oh, "Broadband systems based on DVB-S2 and mobile DVB-RCS and their future applications to broadband mobiles", in Proc. IEEE IWSSC, pp. 98-102, 2006.   DOI
20 A. Bazzi, Andrea G. G. Pasolini, and V. Schena, "Gap fillers for railway tunnels: Technologies and performance", in Proc. EMC EuropeWorkshop 2005-Electromagnetic Compatibility of Wireless Systems, pp. 147-150, 2005.
21 N. K. Lee, H. K. Kim, D. I. Chang, and H. J. Lee, "Providing seamless services with satellite and terrestrial network in mobile two way satellite environments", Lecture Notes in Computer Science, vol. 4773, pp. 551-554, 2007.   DOI
22 R. B. Konda, G. M. Pushpanjali, S. N. Mulgi, S. K. Satnoor, and P. V. Hunagund, "Microstrip array antenna for multiband operation", in Proc. Recent Advances in Microwave Theory and Applications, MICROWAVE 2008. International Conference, pp. 511-513, Nov. 2008.