Browse > Article

Design of Small Antennas with Inductively Coupled Feed Using a Pareto Genetic Algorithm  

Cho Chihyun (School of Electronic and Electrical Engineering, Hongik University)
Choo Hosung (School of Electronic and Electrical Engineering, Hongik University)
Park Ikmo (School of Electrical and Computer Engineering, Ajou University)
Kim Youngkil (School of Electrical and Computer Engineering, Ajou University)
Publication Information
Abstract
In this paper, we explore the inductively coupled concept and propose a class of electrically small planar antennas. The antennas are optimized using NEC in conjunction with a Pareto GA. These antennas show good efficiency and bandwidth performance without any additional matching network. Several optimized designs are fabricated and measured. We explain the operating principle of these antennas using a simple lumped element circuit model. The proposed antennas are translated as printed lines on Duroid for RFID tag antennas.
Keywords
Pareto Genetic Algorithm; Small Antennas; Inductively Coupled Antennas;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. E. Altshuler, 'Electrically small self-resonant wire antennas optimized using a genetic algorithm', IEEE Trans. Antennas Propagat., vol. 50, pp. 297-300, Mar. 2002   DOI   ScienceOn
2 J. Horn, N. Natpliotis, and D. E. Goldberg, 'A niched Pareto genetic algorithm for multiobjective optimization', Proc. First IEEE Conf. Evolutionary Computation, vol. 1, pp. 82-87, 1994
3 http://www.hitachi.co.jp/Prodlmu-chip/index.html
4 J. A. Dobbins, R. L. Rogers, 'Folded conical helix antenna', IEEE Trans. Antennas Propagat., vol. 49, pp. 1777-1781, Dec. 2001   DOI   ScienceOn
5 N. Srinivas, K. Deb, 'Multiobjective optimization using nondominated sorting in genetic algorithm', J. Evolutionary Computation, vol. 2, pp. 221-248, 1995
6 H. Choo, H. Ling, 'Design of electrically small planar antennas using an inductively coupled feed', Electron. Lett., vol. 39, pp. 3080-3081, Oct. 2003
7 H. A. Wheeler, 'The radiansphere around a small antenna', Proc. IRE, vol. 47, pp. 1325-1331, Aug. 1959
8 D. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison Wesley, Reading, MA, 1989
9 H. D. Foltz, J. S. McLean, and G. Crook, 'Diskloaded monopoles with parallel strip elements', IEEE Trans. Antennas Propagat., vol. 46, pp. 1894-1896, Dec. 1998   DOI   ScienceOn
10 J. Hiroyasu, M. Miki, and S. Watanabe, 'The new model of parallel genetic algorithm in multi-objective optimization problems - divided range multi-objective genetic algorithm', Proc. 2000 Congress on Evolutionary Computation, vol. 1, pp. 333-340, 2000
11 G. J. Burke, A. J. Poggio, Numerical Electromagnetics Code (NEC)-Method of Moments, Lawrence Livermore Laboratory, 1981
12 Y. Rahmat-Samii, E. Michielssen, Electromagnetic Optimization by Genetic Algorithms, New York: John Wiley & Sons, 1999
13 G. Goubau, N. Puri, and F. Schwering, 'Diakoptic theory for multielement antennas', IEEE Trans. Antennas Propagat., vol. 30, pp. 15-26 , Jan. 1982   DOI
14 David E. Johnson, John L. Hilburn, Johnny R. Johnson, and Peter D. Scott, Basic Electric Circuit Analysis, Prentice Hall, 1995
15 J. S. McLean, 'A re-examination of the fundamental limits on the radiation Q of electrically small antennas', IEEE Trans. Antennas Propagat., vol. 44, pp. 672-676, May 1996   DOI   ScienceOn