Browse > Article

전자파가 신경세포와 스트레스 반응에 미치는 영향에 관한 최신 연구동향  

Kim, Ju-Hwan (단국대학교 의과대학)
Lee, Jin-Gu (단국대학교 의과대학)
Kim, Hak-Rim (단국대학교 의과대학)
Keywords
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 H. Kleinlogel, T. Dierks, T. Koenig, H. Lehmann, A. Minder, and R. Berz, "Effects of weak mobile phone - electromagnetic fields (gsm, umts) on event related potentials and cognitive functions", Bioelectromagnetics, vol. 29 no. 6, pp. 488-497, 2008.   DOI
2 W. Peter, "Thermal effects of radiation from cellular telephones", Physics in Medicine & Biology, vol. 45, no. 8, pp. 2363, 2000.   DOI
3 L. Birks, M. Guxens, E. Papadopoulou, J. Alexander, F. Ballester, M. Estarlich, M. Gallastegi, M. Ha, M. Haugen, A. Huss, L. Kheifets, H. Lim, J. Olsen, L. Santa-Marina, M. Sudan, R. Vermeulen, T. Vrijkotte, E. Cardis, and M. Vrijheid, "Maternal cell phone use during pregnancy and child behavioral problems in five birth cohorts", Environment International, vol. 104, pp. 122-131, 2017.   DOI
4 S. Sadetzki, C. E. Langer, R. Bruchim, M. Kundi, F. Merletti, R. Vermeulen, H. Kromhout, A.-K. Lee, M. Maslanyj, M. R. Sim, M. Taki, J. Wiart, B. Armstrong, E. Milne, G. Benke, R. Schattner, H.-P. Hutter, A. Woehrer, D. Krewski, C. Mohipp, F. Momoli, P. Ritvo, J. Spinelli, B. Lacour, D. Delmas, T. Remen, K. Radon, T. Weinmann, S. Klostermann, S. Heinrich, E. Petridou, E. Bouka, P. Panagopoulou, R. Dikshit, R. Nagrani, H. Even-Nir, A. Chetrit, M. Maule, E. Migliore, G. Filippini, L. Miligi, S. Mattioli, N. Yamaguchi, N. Kojimahara, M. Ha, K.-H. Choi, A. t. Mannetje, A. Eng, A. Woodward, G. Carretero, J. Alguacil, N. Aragones, M. M. Suare-Varela, G. Goedhart, A. A. Y. N. Schouten-van Meeteren, A. A. M. J. Reedijk, and E. Cardis, "The mobi-kids study protocol: Challenges in assessing childhood and adolescent exposure to electromagnetic fields from wireless telecommunication technologies and possible association with brain tumor risk", Frontiers in Public Health, vol. 2, no. 124, 2014.
5 R. A. Nixon, "The role of autophagy in neurodegenerative disease", Nat. Med., vol. 19, no. 8, pp. 983-997, 2013.   DOI
6 Q. Ma, C. Chen, P. Deng, G. Zhu, M. Lin, L. Zhang, S. Xu, M. He, Y. Lu, W. Duan, H. Pi, Z. Cao, L. Pei, M. Li, C. Liu, Y. Zhang, M. Zhong, Z. Zhou, and Z. Yu, "Extremely low-frequency electromagnetic fields promote in vitro neuronal differentiation and neurite outgrowth of embryonic neural stem cells via up-regulating trpc1", PLOS ONE, vol. 11, no. 3, pp. e0150923, 2016.   DOI
7 L. E. Birks, B. Struchen, M. Eeftens, L. van Wel, A. Huss, P. Gajsek, L. Kheifets, M. Gallastegi, A. Dalmau-Bueno, M. Estarlich, M. F. Fernandez, I. K. Meder, A. Ferrero, A. Jimenez-Zabala, M. Torrent, T. G. M. Vrijkotte, E. Cardis, J. Olsen, B. Valic, R. Vermeulen, M. Vrijheid, M. Roosli, and M. Guxens, "Spatial and temporal variability of personal environmental exposure to radio frequency electromagnetic fields in children in Europe", Environment International, vol. 117, pp. 204-214, 2018.   DOI
8 I. J. Kopin, "Definitions of stress and sympathetic neuronal responses", Annals of the New York Academy of Sciences, vol. 771, no. 1, pp. 19-30, 1995.   DOI
9 C. Tsigos, I. Kyrou, E. Kassi, and G. P. Chrousos, Stress, endocrine physiology and pathophysiology. Endotext, 2000.
10 A. E. Calogero, R. Bernardini, P. W. Gold, and G. P. Chrousos, "Regulation of rat hypothalamic corticotropin-releasing hormone secretion in vitro: Potential clinical implications", Adv. Exp. Med. Biol., vol. 245, pp. 167-181, 1988.
11 K. Pacak, "Stressor-specific activation of the hypothalamic-pituitary-adrenocortical axis", Physiol. Res., 49 Suppl 1, pp. S11-17, 2000.
12 A. İkinci, T. Mercantepe, D. Unal, H. S. Erol, A. Sahin, A. Aslan, O. Bas, H. Erdem, O. F. Sonmez, H. Kaya, and E. Odaci, "Morphological and antioxidant impairments in the spinal cord of male offspring rats following exposure to a continuous 900 MHz electromagnetic field during early and mid-adolescence", Journal of Chemical Neuroanatomy, vol. 75, pp. 99-104, 2016.   DOI
13 K. Liu, M. J. Czaja, "Regulation of lipid stores and metabolism by lipophagy", Cell Death Differ, vol. 20, no. 1, pp. 3-11, 2013.   DOI
14 C. Fujimoto, S. Iwasaki, S. Urata, H. Morishita, Y. Sakamaki, M. Fujioka, K. Kondo, N. Mizushima, and T. Yamasoba, "Autophagy is essential for hearing in mice", Cell Death Dis., vol. 8, no. 5, pp. e2780, 2017.   DOI
15 Y. Feng, D. He, Z. Yao, and D. J. Klionsky, "The machinery of macroautophagy", Cell Res, vol. 24, no. 1, pp. 24-41, 2014.   DOI
16 R. J. Youle, D. P. Narendra, "Mechanisms of mitophagy", Nat. Rev. Mo.l Cell Biol., vol. 12, no. 1, pp. 9-14, 2011.
17 A. L. Anding, E. H. Baehrecke, "Cleaning house: Selective autophagy of organelles", Dev. Cell, vol. 41, no. 1, pp. 10-22, 2017.   DOI
18 H. An, J. W. Harper, "Systematic analysis of ribophagy in human cells reveals bystander flux during selective autophagy", Nat. Cell Biol., vol. 20, no. 2, pp. 135-143, 2018.   DOI
19 C. He, D. J. Klionsky, "Regulation mechanisms and signaling pathways of autophagy", Annu. Rev. Genet., vol. 43, pp. 67-93, 2009.   DOI
20 A. Abada, Z. Elazar, "Getting ready for building: Signaling and autophagosome biogenesis", EMBO Rep., vol. 15, no. 8, pp. 839-852, 2014.   DOI
21 H. Nakatogawa, K. Suzuki, Y. Kamada, and Y. Ohsumi, "Dynamics and diversity in autophagy mechanisms: Lessons from yeast", Nat. Rev. Mol. Cell Biol., vol. 10, no. 7, pp. 458-467, 2009.   DOI
22 G. Marino, M. Niso-Santano, E. H. Baehrecke, and G. Kroemer, "Self-consumption: The interplay of autophagy and apoptosis", Nat. Rev. Mol. Cell Biol., vol. 15, no. 2, pp. 81-94, 2014.   DOI
23 O. Johansson, M. Redmayne, "Exacerbation of demyelinating syndrome after exposure to wireless modem with public hotspot", Electromagnetic Biology and Medicine, vol. 35, no. 4, pp. 393-397, 2016.
24 S. He, D. Ni, B. Ma, J. H. Lee, T. Zhang, I. Ghozalli, S. D. Pirooz, Z. Zhao, N. Bharatham, B. Li, S. Oh, W. H. Lee, Y. Takahashi, H. G. Wang, A. Minassian, P. Feng, V. Deretic, R. Pepperkok, M. Tagaya, H. S. Yoon, and C. Liang, "Ptdins(3) p-bound uvrag coordinates Golgi-er retrograde and atg9 transport by differential interactions with the er tether and the beclin 1 complex", Nat. Cell Biol., vol. 15, no. 10, pp. 1206-1219, 2013.   DOI
25 Y. Kabeya, N. Mizushima, A. Yamamoto, S. Oshitani-Okamoto, Y. Ohsumi, and T. Yoshimori, "Lc3, gabarap and gate16 localize to autophagosomal membrane depending on form-ii formation", J. Cell Sci., 117(Pt 13), pp. 2805-2812, 2004.   DOI
26 Y. Chen, D. Klionsky, "The regulation of autophagy, unanswered questions", J. Cell Sci., 124, pp. 161-170, 2011.   DOI
27 D. Maskey, S. Yousefi, I. Schmid, I. Zlobec, A. Perren, R. Friis, and H. U. Simon, "Atg5 is induced by DNA-damaging agents and promotes mitotic catastrophe independent of autophagy", Nat. Commun., vol. 4, pp. 2130, 2013.   DOI
28 H. Martini-Stoica, Y. Xu, A. Ballabio, and H. Zheng, "The autophagy-lysosomal pathway in neurodegeneration: A tfeb perspective", Trends. Neurosci., vol. 39, no. 4, pp. 221-234, 2016.   DOI
29 S. Pankiv, T. H. Clausen, T. Lamark, A. Brech, J. A. Bruun, H. Outzen, A. Overvatn, G. Bjorkoy, and T. Johansen, "P62/sqstm1 binds directly to atg8/lc3 to facilitate degradation of ubiquitinated protein aggregates by autophagy", J. Biol. Chem., vol. 282, no. 33, pp. 24131-24145, 2007.   DOI
30 N. Mizushima, T. Yoshimori, "How to interpret lc3 immunoblotting", Autophagy, vol. 3, no. 6, pp. 542-545, 2014.
31 P. H. Black, "Stress and the inflammatory response: A review of neurogenic inflammation", Brain, Behavior, and Immunity, vol. 16, no. 6, pp. 622-653, 2002.   DOI
32 D. J. Klionsky, K. Abdelmohsen, A. Abe, M.. J. Abedin, H. Abeliovich, A. Acevedo Arozena, H. Adachi, C. M. Adams, P. D. Adams, K. Adeli et al., "Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)", Autophagy, vol. 12, no. 1, pp. 1-222, 2016.   DOI
33 D. P. Jiang, J. H. Li, J. Zhang, S. L. Xu, F. Kuang, H. Y. Lang, Y. F. Wang, G. Z. An, J. Li, and G. Z. Guo, "Long-term electromagnetic pulse exposure induces abeta deposition and cognitive dysfunction through oxidative stress and overexpression of app and bace1", Brain Res., vol. 1642, pp. 10-19, 2016.   DOI
34 M. K. Borsody, J. M. Weiss, "Alteration of locus coeruleus neuronal activity by interleukin-1 and the involvement of endogenous corticotropin-releasing hormone", Neuroimmunomodulation, vol. 10, no. 2, pp. 101-121, 2002.   DOI
35 M. Bouji, A. Lecomte, C. Gamez, K. Blazy, and A. S. Villegier, "Neurobiological effects of repeated radiofrequency exposures in male senescent rats", Biogerontology, vol. 17, no. 5-6, pp. 841-857, 2016.   DOI
36 M. Bouji, A. Lecomte, Y. Hode, R. de Seze, and A. S. Villegier, "Effects of 900 MHz radiofrequency on corticosterone, emotional memory and neuroinflammation in middle-aged rats", Exp. Gerontol., vol. 47, no. 6, pp. 444-451, 2012.   DOI
37 S. M. Mahdavi, H. Sahraei, P. Yaghmaei, and H. Tavakoli, "Effects of electromagnetic radiation exposure on stress-related behaviors and stress hormones in male Wistar rats", Biomol. Ther. (Seoul), vol. 22, no. 6, pp. 570-576, 2014.   DOI
38 T. Sasaki, M. Senda, S. Kim, S. Kojima, and A. Kubodera, "Age-related changes of glutathione content, glucose transport and metabolism, and mitochondrial electron transfer function in mouse brain", Nucl. Med. Biol., vol. 28, no. 1, pp. 25-31, 2001.   DOI
39 R. Szemerszky, D. Zelena, I. Barna, and G. Bardos, "Stress-related endocrinological and psychopathological effects of short- and long-term 50 Hz electromagnetic field exposure in rats", Brain Res. Bull., vol. 81, no. 1, pp. 92-99, 2010.   DOI
40 C. dos Santos, F. B. Ferreira, L. M. Goncalves-Neto, S. R. Taboga, A. C. Boschero, and A. Rafacho, "Age- and genderelated changes in glucose homeostasis in glucocorticoid-treated rats", Can. J. Physiol. Pharmacol., vol. 92, no. 10, pp. 867-878, 2014.   DOI
41 F. Shekoohi Shooli, S. A. Mortazavi, S. Jarideh, S. Nematollahii, F. Yousefi, M. Haghani, S. M. Mortazavi, and M. B. Shojaeiard, "Short-term exposure to electromagnetic fields generated by mobile phone jammers decreases the fasting blood sugar in adult male rats", J. Biomed. Phys. Eng., vol. 6, no. 1, pp. 27-32, 2016.
42 M. M. Scott, Y. Xu, C. F. Elias, and K. W. Williams, "Central regulation of food intake, body weight, energy expenditure, and glucose homeostasis", Front Neurosci., vol. 8, pp. 384, 2014.
43 H. Tsuneki, T. Wada, and T. Sasaoka, "Role of orexin in the central regulation of glucose and energy homeostasis", Endocr., J., vol. 59, no. 5, pp. 365-374, 2012.   DOI
44 A. Tups, J. Benzler, D. Sergi, S. R. Ladyman, and L. M. Williams, "Central regulation of glucose homeostasis", Compr. Physiol., vol. 7, no. 2, pp. 741-764, 2017.
45 M. W. Schwartz, S. C. Woods, D. Porte, Jr., R. J. Seeley, and D. G. Baskin, "Central nervous system control of food intake", Nature, vol. 404, no. 6778, pp. 661-671, 2000.   DOI
46 Y. Minokoshi, T. Alquier, N. Furukawa, Y. B. Kim, A. Lee, B. Xue, J. Mu, F. Foufelle, P. Ferre, M. J. Birnbaum, B. J. Stuck, and B. B. Kahn, "Amp- kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus", Nature, vol. 428, no. 6982, pp. 569-574, 2004.   DOI
47 C. Canto, Z. Gerhart-Hines, J. N. Feige, M. Lagouge, L. Noriega, J. C. Milne, P. J. Elliott, P. Puigserver, and J. Auwerx, "Ampk regulates energy expenditure by modulating nad+ metabolism and sirt1 activity", Nature, vol. 458, no. 7241, pp. 1056-1060, 2009.   DOI
48 S. F. Leibowitz, K. E. Wortley, "Hypothalamic control of energy balance: Different peptides, different functions", Peptides, vol. 25, no. 3, pp. 473-504, 2004.   DOI
49 U. Andersson, K. Filipsson, C. R. Abbott, A. Woods, K. Smith, S. R. Bloom, D. Carling, and C. J. Small, "Amp-activated protein kinase plays a role in the control of food intake", J. Biol. Chem,. vol. 279, no. 13, pp. 12005-12008, 2004.   DOI
50 A. Barthelemy, A. Mouchard, M. Bouji, K. Blazy, R. Puigsegur, and A.-S. Villegier, "Glial markers and emotional memory in rats following acute cerebral radiofrequency exposures", Environmental Science and Pollution Research, vol. 23, no. 24, pp. 25343-25355, 2016.   DOI
51 M. A. Sherafat, M. Heibatollahi, S. Mongabadi, F. Moradi, M. Javan, and A. Ahmadiani, "Electromagnetic field stimulation potentiates endogenous myelin repair by recruiting subventricular neural stem cells in an experimental model of white matter demyelination", Journal of Molecular Neuroscience, vol. 48, no. 1, pp. 144-153, 2012.   DOI
52 F. J. Medina-Fernandez, B. M. Escribano, E. Aguera, M. Aguilar-Luque, M. Feijoo, E. Luque, F. I. Garcia-Maceira, A. Pascual-Leone, R. Drucker-Colin, and I. Tunez, "Effects of transcranial magnetic stimulation on oxidative stress in experimental autoimmune encephalomyelitis", Free Radical Research, vol. 51, no. 5, pp. 460-469, 2017.   DOI
53 M. L. Pall, "Electromagnetic fields act via activation of voltage gated calcium channels to produce beneficial or adverse effects", Journal of Cellular and Molecular Medicine, vol. 17, no. 8, pp. 958-965, 2013.   DOI
54 C. A. Buckner, A. L. Buckner, S. A. Koren, M. A. Persinger, and R. M. Lafrenie, "Inhibition of cancer cell growth by exposure to a specific time-varying electromagnetic field involves t-type calcium channels", PLoS One, vol. 10, no. 4, pp. e0124136, 2015.   DOI
55 E. Nanou, W. A. Catterall, "Calcium channels, synaptic plasticity, and neuropsychiatric disease", Neuron, vol. 98, no. 3, pp. 466-481, 2018.   DOI
56 J. H. Kim, U. D. Sohn, H.-G. Kim, and H. R. Kim, "Exposure to 835 MHz RF-EMF decreases the expression of calcium channels, inhibits apoptosis, but induces autophagy in the mouse hippocampus", Korean J. Physiol. Pharmacol., vol. 22, no. 3, pp. 277-289, 2018.   DOI
57 E. Pchitskaya, E. Popugaeva, and I. Bezprozvanny, "Calcium signaling and molecular mechanisms underlying neurodegenerative diseases", Cell Calcium, vol. 70, pp. 87-94, 2018.   DOI
58 E. Neher, T. Sakaba, "Multiple roles of calcium ions in the regulation of neurotransmitter release", Neuron, vol. 59, no. 6, pp. 861-872, 2008.   DOI
59 Z. Sun, J. Ge, B. Guo, J. Guo, M. Hao, Y.. Wu, Y. Lin, T. La, P. Yao, Ya. Mei, Y. Feng, and L. Xue, "Extremely low frequency electromagnetic fields facilitate vesicle endocytosis by increasing presynaptic calcium channel expression at a central synapse." Scientific Reports, vol. 6, pp. 21774, 2016.   DOI
60 N. Marchesi, C. Osera, L. Fassina, M. Amadio, F. Angeletti, M. Morini, G. Magenes, L. Venturini, M. Biggiogera, G. Ricevuti, S. Govoni, S. Caorsi, A. Pascale, and S. Comincini, "Autophagy is modulated in human neuroblastoma cells through direct exposition to low frequency electromagnetic fields", J. Cell Physiol., vol. 229, no. 11, pp. 1776-1786, 2014.   DOI
61 J. H. Kim, D. H. Yu, Y. H. Huh, E. H. Lee, H. G. Kim and H. R. Kim, "Long-term exposure to 835 MHz RF-EMF induces hyperactivity, autophagy and demyelination in the cortical neurons of mice", Sci. Rep., vol. 7, pp. 41129, 2017.   DOI
62 J. H. Kim, Y. H. Huh, and H. R. Kim, "Induction of autophagy in the striatum and hypothalamus of mice after 835 MHz radiofrequency exposure", Plos One, vol. 11, no. 4, pp. e0153308, 2016.   DOI
63 D. Belpomme, C. Campagnac, and P. Irigaray, "Reliable disease biomarkers characterizing and identifying electrohypersensitivity and multiple chemical sensitivity as two etiopathogenic aspects of a unique pathological disorder", Reviews on Environmental Health, vol. 30, no. 4, pp. 251, 2015.   DOI
64 J. H. Kim, D. H. Yu, H. J. Kim, Y. H. Huh, S. W. Cho, J. K. Lee, H. G. Kim, and H. R. Kim, "Exposure to 835 MHz radiofrequency electromagnetic field induces autophagy in hippocampus but not in brain stem of mice", Toxicol. Ind. Health, vol. 34 no. 1, pp. 23-35, 2018.   DOI
65 K. Bhatheja, J. Field, "Schwann cells: Origins and role in axonal maintenance and regeneration", The International Journal of Biochemistry & Cell Biology, vol. 38, no. 12, pp. 1995-1999, 2006.   DOI
66 M. Redmayne, O. Johansson, "Could myelin damage from radiofrequency electromagnetic field exposure help explain the functional impairment electrohypersensitivity? A review of the evidence", J. Toxicol. Environ. Health B Crit. Rev., vol. 17, no. 5, pp. 247-258, 2014.   DOI
67 R. Baan, Y. Grosse, B. Lauby-Secretan, F. El Ghissassi, V. Bouvard, L. Benbrahim-Tallaa, N. Guha, F. Islami, L. Galichet, and K. Straif, "Carcinogenicity of radiofrequency electromagnetic fields", The Lancet Oncology, vol. 12, no. 7, pp. 624-626, 2011.   DOI
68 C. E. Langer, P. de Llobet, A. Dalmau, J. Wiart, G. Goedhart, M. Hours, G. P. Benke, E. Bouka, R. Bruchim, K.-H. Choi, A. Eng, M. Ha, M. Karalexi, K. Kiyohara, N. Kojimahara, D. Krewski, H. Kromhout, B. Lacour, A. t Mannetje, M. Maule, E. Migliore, C. Mohipp, F. Momoli, E. Petridou, K. Radon, T. Remen, S. Sadetzki, M. R. Sim, T. Weinmann, R. Vermeulen, E. Cardis, and M. Vrijheid, "Patterns of cellular phone use among young people in 12 countries: Implications for RF exposure", Environment International, vol. 107, pp. 65-74, 2017.   DOI
69 T. S. Aldad, G. Gan, X. B. Gao, and H. S. Taylor, "Fetal radiofrequency radiation exposure from 800-1,900 MHz-rated cellular telephones affects neurodevelopment and behavior in mice", Sci. Rep., vol. 2, pp. 312, 2012.   DOI
70 J. H. Kim, H. J. Kim, D. H. Yu, H. S. Kweon, Y. H. Huh, and H. R. Kim, "Changes in numbers and size of synaptic vesicles of cortical neurons induced by exposure to 835 MHz radiofrequency-electromagnetic field", PLoS One, vol. 12, no. 10, pp. e0186416, 2017.   DOI
71 Y. Cui, X. Liu, T. Yang, Y.-A. Mei, and C. Hu, "Exposure to extremely low-frequency electromagnetic fields inhibits t-type calcium channels via aa/lte4 signaling pathway", Cell Calcium, vol. 55, no. 1, pp. 48-58, 2014.   DOI