Browse > Article

부분반사표면(PRS)을 이용한 Fabry-Perot(FP) 공진 안테나의 설계 방법 및 기술 동향  

Kim, Dong-Ho (세종대학교)
Lee, Seok-Min (세종대학교)
Nam, In-Jung (세종대학교)
Keywords
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. A. Munk, Frequency Selective Surfaces: Theory and Design, John Wiley & Sons, 2005.
2 D. Kim, J. I. Choi, "Design of a multiband frequency selective surface", ETRI J., vol. 28, no.4, pp. 506-508, 2006.   DOI
3 J. D. Kraus, R. J. Marhefka, Antennas: For All Applications, 3rd ed., New York, NY, USA: McGraw-Hill, 2002.
4 G. V. Trentini, "Partially reflecting sheet arrays", IRE Trans. Antennas Propag., vol. 12, pp. 666-671, 1956.
5 J. Ju, D. Kim, and J. Choi, "Fabry-Perot cavity antenna with lateral metallic walls for WiBro base station applications", Electron. Lett., vol. 45, pp. 141-142, 2009.   DOI
6 C. A. Balanis, Advanced Engineering Electromagnetics, John Wiley & Sons, 1989.
7 N. Guerin, S. Enoch, G. Tayeb, P. Sabouroux, P. Vincent, and H. Legay, "A metallic Fabry-Perot directive antenna", IEEE Trans. Antennas Propag., vol. 54, pp. 220-224, 2006.   DOI
8 C. Cheype, C. Serier, M. Thevenot, T. Monediere, A. Reineix, and B. Jecko, "An electromagnetic bandgap resonator antenna", IEEE Trans. Antennas Propag., vol. 50, no. 9, pp. 1285-1290, Sep. 2002.   DOI
9 R. M. Hashmi, B. A. Zeb, and K. P. Esselle, "Wideband high-gain EBG resonator antennas with small footprints and all-dielectric superstructures", IEEE Trans. Antennas Propag., vol. 62, pp. 2970-2977, Jun. 2014.   DOI
10 여준호, 김동호, "스트립라인 형태의 주파수 선택적 표면 덮개부를 이용한 PCS 대역 기지국용 EBG 공진기 안테나", 2008년 8월 전자공학회 논문지 TC편 45(4), pp. 592-604.
11 J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed, Princeton University Press, 2011.
12 L. Moustafa, B. Jecko, "EBG structure with wide defect band for broadband cavity antenna applications", IEEE Trans. Antennas Propag., vol. 7, pp. 693-696, 2008.   DOI
13 D. Kim, J. Yeo, "A new resonance prediction method of Fabry-Perot cavity(FPC) antennas enclosed with metallic side walls", J. Electromagn. Eng. Sci., vol. 11, pp. 220-226, 2011.   DOI
14 D. Kim, J. Ju, and J. Choi, "A mobile communication base station antenna using a genetic algorithm based Fabry-Perot resonance optimization", IEEE Trans. Antennas Propag., vol. 60, pp. 1053-1058, 2012.   DOI
15 D. Kim, J. Ju, and J. Choi, "A broadband Fabry-Perot cavity antenna designed using an improved resonance prediction method", Microw. Opt. Technol. Lett., vol. 53, pp. 1065-1069, 2011.   DOI
16 J. Yeo, D. Kim, "Novel design of a high-gain and wideband Fabry-Perot cavity antenna using a tapered AMC substrate", J. Infrared Millim. Terahertz Waves, pp. 217-224, 2009.
17 L. Y. Ji, P. Y. Qin, "Wideband Fabry-Perot cavity antenna with a shaped ground plane", IEEE Access, vol. 6, pp. 2291, 2018.   DOI
18 S. Wang, A. P. Feresidis, G. Goussetis, and J. C. Vardaxoglou, "High-gain subwavelength resonant cavity antennas based on metamaterial ground planes", IEE P-Microw. Anten. P., vol. 153, pp. 1-6, 2006.
19 D. Kim, E. H. Kim, "A high-gain wideband antenna with frequency selective side reflectors operating in an antiresonant mode", IEEE Antennas Wireless Propag. Lett., vol. 14, pp. 442-445, 2015.   DOI
20 A. P. Feresidis, G. Goussetis, S. Wang, and J. C. Vardaxoglou, "Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas", IEEE Trans. Antennas Propag., vol. 53, pp. 209-215, 2005.   DOI
21 L. Zhou, H. Li, Y. Qin, Z. Wei, and C. T. Chan, "Directive emissions from subwavelength metamaterial-based cavities", IWAT 2005, pp. 191-194, 2005.
22 K. Yao, S. Lan, and L. Xu, "A high gain Fabry-Perot cavity antenna with a double-layered partially reflecting frequency selective surface structure", 2017 ISAP, pp. 1-2, 2017.
23 M. S. Toubet, R. Chantalat, M. Hajj, and B. Jecko, "2D matrix of joint ultra low-profile(ULP) EBG antennas for high gain applications", 15 Int. Sym. Antenna Tech. Applied Electromagn., pp. 1-3, 2012.
24 K. Konstinidis, A. P. Feresidis, and P. S. Hall, "Multilayer partially reflective surfaces for broadband Fabry-Perot cavity antennas", IEEE Trans. Antennas Propag., vol. 62, pp. 3474-3481, 2014.   DOI
25 A. P. Feresidis, J. C. Vardaxoglou, "High gain planar antenna using optimised partially reflective surfaces", IEE P-Microw. Anten. P., vol. 148, pp. 345-350, 2001.
26 L. Zhou, X. Chen, and X. Duan, "Fabry-Perot resonator antenna with high aperture efficiency using a double-layer non-uniform superstrate", IEEE Trans. Antennas Propag., accepted for publication in a future issue, 2018.
27 A. Ourir, S. N. Burokur, and A. de Lustrac, "Electronic beam steering of an active metamaterial-based directive subwavelength cavity", Electron. Lett., vol. 43, no. 9, pp. 493-494, Apr. 2007.   DOI
28 S. A. Muhammad, R. Sauleau, and H. Legay, "Small-size shielded metallic stacked Fabry-Perot cavity antennas with large bandwidth for space applications", IEEE Trans. Antennas Propag., vol. 60, pp. 792-802, 2012.   DOI
29 R. M. Hashmi, B. A. Zeb, and K. P. Esselle, "Wideband high-gain EBG resonator antennas with small footprints and all-dielectric superstructures", IEEE Trans. Antennas Propag., vol. 62, pp. 2970-2977, 2014.   DOI
30 A. Ghasemi, S. N. Burokur, A. Dhouibi, and A. de Lustrac, "High beam steering in Fabry-Perot leaky wave antennas", IEEE Antennas Wireless Propag. Lett., vol. 12, pp. 261-264, Dec, 2013.   DOI
31 T. Debogovic, J. Perruisseau-Carrier, "Array-fed partially reflective surface antenna with independent scanning and beamwidth dynamic control", IEEE Trans. Antennas Propag., vol. 62, no. 62, pp. 446-449, Jan. 2014.   DOI
32 R. Jeanty, S. Y. Chen, "A low-profile olarization-reconfigurable cavity antenna based on partially reflective surface", 2017 IEEE RFIT, pp. 226-228, 2017.