Browse > Article

5G 안테나 기술 동향  

Lee, Seung-Yun (포항공과대학교)
Yun, Yeong-No (포항공과대학교)
Park, Jun-Ho (포항공과대학교)
Chu, Mu-Gung (포항공과대학교)
Kim, Yeon-U (포항공과대학교)
Choe, Jae-Hyeon (포항공과대학교)
Hong, Won-Bin (포항공과대학교)
Keywords
Citations & Related Records
연도 인용수 순위
  • Reference
1 Spatial Channel Model for Multiple Input Multiple Output (MIMO) Simulations (Release 10), Standard 3GPP TR 25.996, Mar. 2011.
2 T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, "Millimeter wave mobile communications for 5G cellular: It will work!", IEEE Access, vol. 1, pp. 335-349, 2013.   DOI
3 Y. L. Ban, Y. F. Qiang, Z. Chen, K. Kang, and J. H. Guo, "A dual-loop antenna design for hepta-band WWAN/LTE metal-rimmed smartphone applications", IEEE Transactions on Antennas and Propagation, vol. 63, no. 1, pp. 48-58, Jan. 2015.   DOI
4 A. Osseiran, Boccardi, V. Braun, K. Kusume, P. Marsch, M. Maternia, O. Queseth, M. Schellmann, H. Schotten, H. Taoka, H. Tullberg, M. A. Uusitalo, B. Timus, and M. Fallgren, "Scenarios for 5G mobile and wireless communications: The vision of the METIS project", IEEE Communications Magazine, vol. 52, no. 5, pp. 26-35, May 2014.   DOI
5 J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. Soong, and J. C. Zhang, "What will 5G be?", IEEE Journal on Selected Areas in Communications, vol. 32, no. 6, pp. 1065-1082, Jun. 2014.   DOI
6 S. W. Lee, H. S. Jung, and Y. J. Sung, "A reconfigurable antenna for LTE/WWAN mobile handset applications", IEEE Antennas and Wireless Propagation Letters, vol. 14, pp. 48-51, 2015.   DOI
7 Q. Wang, Y. Jing, "Closed-form average SNR and ergodic capacity approximations for best relay selection", IEEE Transactions on Vehicular Technology, vol. 65, no. 4, pp. 2827-2833, April 2016.   DOI
8 Y. Kim, W. Hong, "Coexistance issues concerning 4G and mmWave 5G antennas for mobile terminals", in 2017 IEEE 6th Asia-Pacific Conference on Antennas and Propagation (APCAP).
9 M. Y. Li, Z. Q. Xu, Y. L. Ban, C. Y. D. Sim, and Z. F. Yu, "Eight-port orthogonally dual-polarised MIMO antennas using loop structures for 5G smartphone", IET Microwaves, Antennas & Propagation, vol. 11, no. 12, pp. 1810-1816, 9 22 2017.   DOI
10 M. Y. Li, Y. L. Ban, Z. Q. Xu, J. Guo, and Z. F. Yu, "Tri-polarized 12-antenna MIMO array for future 5G smartphone applications", IEEE Access, vol. 6, pp. 6160-6170, 2018.   DOI
11 Y. Li, C. Y. D. Sim, Y. Luo, and G. Yang, "12-Port 5G massive MIMO antenna array in sub-6 GHz mobile handset for LTE bands 42/43/46 applications", IEEE Access, vol. 6, pp. 344-354, 2018.   DOI
12 K. L. Wong, C. Y. Tsai, and J. Y. Lu, "Two asymmetrically mirrored gap-coupled loop antennas as a compact building block for eight-antenna MIMO array in the future smartphone", IEEE Transactions on Antennas and Propagation, vol. 65, no. 4, pp. 1765-1778, Apr. 2017.   DOI
13 C. Gao, X. Q. Li, W. J. Lu, and K. L. Wong, "Conceptual design and implementation of a four element MIMO antenna system packaged within a metallic handset", Microwave and Optical Technology Letters, vol. 60, no. 2, pp. 436-444, 2018.   DOI
14 Y. Huo, X. Dong, and W. Xu, "5G cellular user equipment: from theory to practical hardware design", IEEE Access, vol. 5, pp. 13992-14010, 2017.   DOI
15 B. Sadhu, Y. Tousi, J. Hallin, S. Sahl, S. Reynolds, O. Renstrom, and G. Weibull, "7.2 A 28 GHz 32-element phased-array transceiver IC with concurrent dual polarized beams and 1.4 degree beam-steering resolution for 5G communication," in 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, 2017, pp. 128-129.
16 W. Hong, K. Baek, and Y. Lee, "Quantitative analysis of the effects of polarization and pattern reconfiguration for mmWave 5G mobile antenna prototypes", in 2017 IEEE Radio and Wireless Symposium (RWS), Phoenix, AZ, 2017, pp. 68-71.
17 Q. Wu, J. Yin, C. Yu, H. Wang, and W. Hong, "Low-profile millimeter-wave SIW cavity-backed dual-band circularly polarized antenna", IEEE Transactions on Antennas and Propagation, vol. 65, no. 12, pp. 7310-7315, Dec. 2017.   DOI
18 W. Hong, K. H. Baek, and S. Ko, "Millimeter-wave 5G antennas for smartphones: Overview and experimental demonstration", IEEE Transactions on Antennas and Propagation, vol. 65, no. 12, pp. 6250-6261, Dec. 2017.   DOI
19 J. D. Dunworth, A. Homayoun, B. H. Ku, Y. C. Ou, K. Chakraborty, G. Liu, and H. Hedayati, "A 28 GHz Bulk-CMOS dual-polarization phased-array transceiver with 24 channels for 5G user and basestation equipment", in 2018 IEEE International Solid-State Circuits Conference-(ISSCC), San Francisco, CA, USA, 2018, pp. 70-72.
20 W. Hong, K. H. Baek, Y. Lee, Y. Kim, and S. T. Ko, "Study and prototyping of practically large-scale mmWave antenna systems for 5G cellular devices", IEEE Communications Magazine, vol. 52, no. 9, pp. 63-69, Sep. 2014.   DOI
21 W. Hong, "Solving the 5G mobile antenna puzzle: Assessing future directions for the 5G mobile antenna paradigm shift", IEEE Microwave Magazine, vol. 18, no. 7, pp. 86-102, Nov.-Dec. 2017.   DOI
22 M. K. Hedayati, A. Abdipour, R. S. Shirazi, M. John, M. J. Ammann, and R. B. Staszewski, "A 38 GHz on-chip antenna in 28-nm CMOS using artificial magnetic conductor for 5G wireless systems", in 2016 Fourth International Conference on Millimeter-Wave and Terahertz Technologies (MMWaTT), Tehran, 2016, pp. 29-32.
23 Y. P. Zhang, D. Liu, "Antenna-on-chip and antenna-inpackage solutions to highly integrated millimeter-wave devices for wireless communications", IEEE Transactions on Antennas and Propagation, vol. 57, no. 10, pp. 2830-2841, 2009.   DOI
24 D. Liu, X. Gu, C. W. Baks, and A. Valdes-Garcia, "Antennain-package design considerations for ka-band 5G communication applications", IEEE Transactions on Antennas and Propagation, vol. 65, no. 12, pp. 6372-6379, Dec. 2017.   DOI
25 J.-H. Lee, S. Pinel, J. Papapolymerou, J. Laskar and M. M. Tentzeris, "Low-loss LTCC cavity filters using systemon-package technology at 60 GHz," IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 12, pp. 3817-3824, Dec. 2005.   DOI
26 P. V. Bijumon, Y. M. M. Antar, A. P. Freundorfer, and M. Sayer, "Dielectric resonator antenna on silicon substrate for system on-chip applications", IEEE Transactions on Antennas and Propagation, vol. 56, no. 11, pp. 3404-3410, Nov. 2008.   DOI
27 S. Pan, F. Capolino, "Design of a CMOS On-Chip slot antenna with extremely flat cavity at 140 GHz", IEEE Antennas and Wireless Propagation Letters, vol. 10, pp. 827-830, 2011.   DOI
28 S. Y. Lee, D. Choi, Y. Youn, and W. Hong, "Electrical characterization of highly efficient, optically transparent nanometers-thick unit cells for antenna-on-display applications", in 2018 IEEE MTT-S International Microwave Symposium (IMS).
29 L. Hu, H. Wu, and Y. Cui, "Metal nanogrids, nanowires, and nanofibers for transparent electrodes", MRS Bulletin, vol. 36 no. 10, pp. 760-765, 2011   DOI
30 Q. H. Dao, R. Tchuigoua, B. Geck, D. Manteuffel, P. von Witzendorff, and L. Overmeyer, "Optically transparent patch antennas based on silver nanowires for mm-wave applications", in 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, CA, 2017, pp. 2189-2190.
31 Q. H. Dao, T. J. Cherogony, and B. Geck, "Optically transparent and circularly polarized patch antenna for K-band applications", in 2016 German Microwave Conference (GeMiC), Bochum, pp. 247-250. 2016.
32 S. Hong, Y. Kim, and C. Won Jung, "Transparent microstrip patch antennas with multilayer and metal-mesh films", IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 772-775, 2017.   DOI
33 Q. L. Li, S. W. Cheung, D. Wu, and T. I. Yuk, "Optically transparent dual-band MIMO antenna using micro-metal mesh conductive film for WLAN system", IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 920-923, 2017.   DOI
34 W. Hong, Z.H. Jiang, C. Yu, J. Zhou, P. Chen, Z. Yu, and Y. Cheng, "Multibeam antenna technologies for 5G wireless communications", IEEE Transactions on Antennas and Propagation, vol. 65, no. 12, pp. 6231-6249, Dec. 2017.   DOI
35 X. Chen, H. Feng Ma, X. Ying Zou, W. Xiang Jiang, and T. Jun Cui, "Three-dimensional broadband and high-directivity lens antenna made of metamaterials", Journal of Applied Physics, vol. 110, no. 4, 2011.
36 Y. Youn, W. Hong, " Design of unit cell for low-power consumption beamforming by utilizing fabry-perot resonator", in The Korean Institute of Electromagnetic and Science (KIEES) 2017 Annual Symposium, Seoul, Korea, Nov. 2017.
37 D. Berry, R. Malech, and W. Kennedy, "The reflectarray antenna", IEEE Transactions on Antennas and Propagation, vol. 11, no. 6, pp. 645-651, Nov. 1963.   DOI
38 M. A. Malek, S. Hakimi, S. K. Abdul Rahim, and A. K. Evizal, "Dual-Band CPW-Fed transparent antenna for active RFID tags", IEEE Antennas and Wireless Propagation Letters, vol. 14, pp. 919-922, 2015.   DOI
39 B. V. Ha, R. E. Zich, P. Pirinoli, and S. V. Hum, "Design and optimization of a multi-resonant reflectarray element", in The 8th European Conference on Antennas and Propagation (EuCAP 2014), The Hague, pp. 2301-2304. 2014.
40 A. M. Abd-Elhady, S. H. Zainud-Deen, A. A. Mitkees, and A. A. Kishk, "Varying slot lengths strip loading squared dielectric resonator reflectarray." International Journal of Electromagnetics and Applications, vol. 2, no. 3, pp. 51-55, 2012.   DOI
41 I. Sohail, Y. Ranga, K. P. Esselle, and S. G. Hay, "A linear to circular polarization converter based on Jerusalem-Cross frequency selective surface," in 2013 7th European Conference on Antennas and Propagation (EuCAP), Gothenburg, pp. 2141-2143, 2013.
42 Y. Youn, W. Hong, "Planar dual-band linear to circular polarization converter using radial-shape multi-layer FSS". in 2018 IEEE Antennas and Propagation Society International Symposium (APSURSI).
43 S. V. Hum, J. Perruisseau-Carrier, "Reconfigurable reflectarrays and array lenses for dynamic antenna beam control: A review," IEEE Transactions on Antennas and Propagation, vol. 62, no. 1, pp. 183-198, Jan. 2014.   DOI