Browse > Article

나노 소재를 이용한 전자파 차폐 소재 리뷰  

Kim, Sang-U (한국과학기술연구원)
Keywords
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 H. Pang, K. Rajan, J. Silvernail, P. Mandlik, R. Ma, M. Hack, J. J. Brown, J. S. Yoo, S.-H. Jung, and Y.-C. Kim, "In recent progress of flexible AMOLED displays, advances in display technologies; And e-papers and flexible displays", International Society for Optics and Photonics, p. 79560J, Feb. 2011.
2 J. A. Rogers, T. Someya, and Y. Huang, "Materials and mechanics for stretchable electronics". Science, vol. 327, pp. 1603-1607, 2010.   DOI
3 E. Torres Alonso, G. Karkera, G. F. Jones, M. F. Craciun, and S. Russo, "Homogeneously bright, flexible, and foldable lighting devices with functionalized graphene electrodes". ACS Appl. Mater. Interfaces, vol. 8, pp. 16541-16545, 2016.   DOI
4 S. Umrao, T. K. Gupta, S. Kumar, V. K. Singh, M. K. Sultania, J. H. Jung, I.-K. Oh, and A. Srivastava, "Microwaveassisted synthesis of boron and nitrogen co-doped reduced graphene oxide for the protection of electromagnetic radiation in Ku-band". ACS Appl. Mater. Interfaces, vol. 7, pp. 19831-19842, 2015.   DOI
5 B. Shen, W. Zhai, and W. Zheng, "Ultrathin flexible graphene film: An excellent thermal conducting material with efficient EMI shielding". Adv. Funct. Mater., vol. 24, pp. 4542-4548, 2014.   DOI
6 W.-L. Song, X.-T. Guan, L.-Z. Fan, W.-Q. Cao, C.-Y. Wang, Q.-L. Zhao, and M.-S. Cao, "Magnetic and conductive graphene papers toward thin layers of effective electromagnetic shielding". J. Mater. Chem., vol. 3, pp. 2097-2107, 2015.   DOI
7 Z. Chen, C. Xu, C. Ma, W. Ren, and H. M. Cheng, "Lightweight and flexible graphene foam composites for highperformance electromagnetic interference shielding". Adv. Mater., vol. 25, pp. 1296-1300, 2013.   DOI
8 J. Chen, C. T. Liu, "Technology advances in flexible displays and substrates". IEEE Access, vol. 1, pp. 150-158, 2013.   DOI
9 Y. Khan, A. E. Ostfeld, C. M. Lochner, A. Pierre, and A. C. Arias, "Monitoring of vital signs with flexible and wearable medical devices". Adv. Mater., vol. 28, pp. 4373-4395, 2016.   DOI
10 H.-C. Lee, J.-Y. Kim, C.-H. Noh, K. Y. Song, and S.-H. Cho, "Selective metal pattern formation and its EMI shielding efficiency". Appl. Surf. Sci., vol. 252, pp. 2665-2672, 2006.   DOI
11 A. Ameli, M. Nofar, S. Wang, and C. B. Park, "Lightweight polypropylene/stainless-steel fiber composite foams with low percolation for efficient electromagnetic interference shielding". ACS Appl. Mater. Interfaces, vol. 6, pp. 11091-11100, 2014.   DOI
12 D. Patton, "Automated drive: A reality check", Jun. 2015.
13 W.-L. Song, C. Gong, H. Li, X.-D. Cheng, M. Chen, X. Yuan, H. Chen, Y. Yang, and D. Fang, "Graphene-based sandwich structures for frequency selectable electromagnetic shielding". ACS Appl. Mater. Interfaces, vol. 9, pp. 36119-36129, 2017.   DOI
14 김종호, 윤영근, 김명돈, 정영준, "5G/IoT 시대의 밀리미터파 대역 전파전파 기술동향(Harmonized Site-General Path Loss 모델 개발)", 전자파기술, 28(4), pp. 45-53, 2017년 7월.
15 김창주, "자율주행차 전파 기술", 전자파기술, 28(4), pp. 27-36, 2017년 7월.
16 강영흥 등, "무인 이동체를 위한 전파기술 및 정책연구", KCA연구 2016-16, 2017년.
17 P. Smulders, L. Correia, "Characterisation of propagation in 60 GHz radio channels", Electronics Communication Engineering Journal, vol. 9, no. 2, pp. 73-80, Apr. 1997.   DOI
18 T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. Wong, J. Schulz, M. Samimi, and F. Guitierrez, "Millimeter wave mobile communications for 5G cellular: It will work!", IEEE Access, vol. 1, pp. 335-349, 2013.   DOI
19 G. R. MacCartney, M. Samimi, and T. S. Rappaport, "Omnidirectional path loss models from measurements recorded in New York city at 28 GHz and 73 GHz", in IEEE International Symposium on Personal Indoor and Mobile Radio Communications(PIMRC), Sep. 2014.
20 T. S. Rappaport, R. MacCartney, M. Samimi, and S. Sun, "Wideband millimeterwave propagation measurements and channel models for future wireless communication system design", IEEE Trans. on Communications, vol. 63, no. 9, pp. 3029-3056, Sep. 2015.   DOI
21 S. Kwon, R. Ma, U. Kim, H. R. Choi, and S. Baik, "Flexible electromagnetic interference shields made of silver flakes, carbon nanotubes and nitrile butadiene rubber". Carbon, vol. 68, pp. 118-124, 2014.   DOI
22 M. Melzer, J. Monch, D. Makarov, Y. Zabila, G. Bermudez, D. Karnaushenko, S. Baunack, F. Bahr, C. Yan, M. Kaltenbrunner, and O. Schmidt, "Wearable magnetic field sensors for flexible electronics", Adv. Mater., vol. 27, pp. 1274-1280, 2015.   DOI
23 D. G. Kim, S. H. Kim, J. H. Kim, J.-C. Lee, J.-P. Ahn, and S. W. Kim, "Failure criterion of silver nanowire electrodes on a polymer substrate for highly flexible devices". Sci. Rep., vol. 7, p. 45903, 2017.   DOI
24 J. Jang, "Displays develop a new flexibility". Mater. Today, vol. 9, pp. 46-52, 2006.
25 T. Ikeda, D. Nakamura, M. Ikeda, Y. Iwaki, H. Ikeda, K. Watanabe, H. Miyake, Y. Hirakata, S. Yamazaki, D. Kurosaki, M. Ohno, C. Bower, D. Cotton, A. Matthews, P. Andrew, C. Gheorghiu, and J. Bergquis, "A 4-mm radius curved display with touch screen". Dig. Tech. Pap., vol. 45, pp. 118-121 2014.   DOI
26 J. Lewis, "Material challenge for flexible organic devices", Mater. Today, vol. 9, pp. 38-45, 2006.   DOI
27 S. Greco, M. S. Sarto, and A. Tamburrano, "Shielding performances of ITO transparent windows: Theoretical and experimental characterization", EMC Europe, pp. 8-12, Sep. 2008.
28 J.-L. Huang, B.-S. Yau, C.-Y. Chen, W.-T. Lo, and D.-F. Lii, "The electromagnetic shielding effectiveness of indium tin oxide films", Ceramics Ceram. International Int., vol. 27 no. 3, pp. 363-365, 2001.   DOI
29 Y.-J. Choi, S. C. Gong, D. C. Johnson, S. Golledge, G. Y. Yeom, and H.-H. Park, "Characteristics of the electromagnetic interference shielding effectiveness of al-doped ZnO thin films deposited by atomic layer deposition", Applied Appl. Surface Surf. Science Sci., vol. 269, pp. 92-97, 2013.
30 S. K. Vishwanath, D.-G. Kim, and J. Kim, "Electromagnetic interference shielding effectiveness of invisible metal-mesh prepared by electrohydrodynamic jet printing. Japanese", J. Appl. Phys., vol. 53(5S3), pp. 05HB11, 2014.   DOI
31 H. Wang, Z. Lu, and J. Tan, "Generation of uniform diffraction pattern and high EMI shielding performance by metallic mesh composed of ring and rotated sub-ring arrays", Optics Opt. Express, vol. 24, no. 20, pp. 22989-23000, 2016.   DOI
32 S. K. Hong, K. Y. Kim, T. Y. Kim, J. H. Kim, S. W. Park, J. H. Kim, and B. J. Cho, "Electromagnetic interference shielding effectiveness of monolayer graphene", Nanotechnology, vol. 23, no. 45, p. 455704, 2012.   DOI
33 S. Kim, J.-S. Oh, M.-G. Kim, W. Jang, M. Wang, Y. Kim, H. W. Seo, Y. C. Kim, J.-H. Lee, and Y. Lee, "Electromagnetic interference (EMI) transparent shielding of reduced graphene oxide (RGO) interleaved structure fabricated by electrophoretic deposition", ACS Appl. Mater. & Interfaces, vol. 6, no. 20, pp. 17647-17653, 2014.   DOI
34 Z. Lu, L. Ma, J. Tan, H. Wang, and X. Ding, "Transparent multi-layer graphene/polyethylene terephthalate structures with excellent microwave absorption and electromagnetic interference shielding performance", Nanoscale, vol. 8, no. 37, pp. 16684-16693, 2016.   DOI
35 Y. Han, Y. Liu, L. Han, J. Lin, and P. Jin, "High-performance hierarchical graphene/metal-mesh film for optically transparent electromagnetic interference shielding", Carbon, vol. 115, pp. 34-42, 2017.   DOI
36 L. Ma, Z. Lu, J. Tan, J. Liu, X. Ding, N. Black, T. Li, J. Gallop, and L. Hao, Transparent conducting graphene hybrid films to improve electromagnetic interference (EMI) shielding performance of graphene. ACS Appl. Mater. & Interfaces, vol. 9, no. 39, pp. 34221-34229, 2017.   DOI
37 J. Jin, J. Lee, S. Jeong, S. Yang, J.-H. Ko, H.-G. Im, S.-W. Baek, J.-Y. Lee, and B.-S. Bae, "High-performance hybrid plastic films: A robust electrode platform for thin-film optoelectronics", Energy Environ. Sci., vol. 6, pp. 1811-1817, 2013.   DOI
38 S. K. Hong, K. Y. Kim, T. Y. Kim, J. H. Kim, S. W. Park, J. H. Kim, and B. J. Cho, "Electromagnetic interference shielding effectiveness of monolayer graphene", Nanotechnology, vol. 23, p. 455704, Oct. 2012.   DOI
39 M. Song, D. S. You, K. Lim, S. Park, S. Jung, C. S. Kim, D. H. Kim, D. G. Kim, J. K. Kim, and J. Park, "Highly efficient and bendable organic solar cells with solutionprocessed silver nanowire electrodes", Adv. Funct. Mater., vol. 23, pp. 4177-4184, 2013.   DOI
40 M.-S. Lee, K. Lee, S.-Y. Kim, H. Lee, J. Park, K.-H. Choi, H.-K. Kim, D.-G. Kim, D.-Y. Lee, and S. Nam, "Highperformance, transparent, and stretchable electrodes using graphene-metal nanowire hybrid structures", Nano Lett., vol. 13, pp. 2814-2821, 2013.   DOI
41 A. Chaudhary, S. Kumari, R. Kumar, S. Teotia, B. P. Singh, A. P. Singh, S. K. Dhawan, and S. R. Dhakate, "Lightweight and easily foldable MCMB-MWCNTs composite paper with exceptional electromagnetic interference shielding", ACS Appl. Mater. & Interfaces, vol. 8, pp. 10600-10608, 2016.   DOI
42 B. Zhao, C. Zhao, R. Li, S. M. Hamidinejad, and C. B. Park, "Flexible, ultrathin, and high-efficiency electromagnetic shielding properties of poly(vinylidene fluoride)/carbon composite films", ACS Appl. Mater. & Interfaces, vol. 9, pp. 20873-20884, 2017.   DOI
43 Z. Zeng, M. Chen, Y. Pei, S. I. S. Shahabadi, B. Che, P. Wang, and X. Lu, "Ultralight and flexible polyurethane/silver nanowire nanocomposites with unidirectional pores for highly effective electromagnetic shielding", ACS Appl. Mater. Interfaces, vol. 9, pp. 32211-32219, 2017.   DOI
44 Y. Wu, Z. Wang, X. Liu, X. Shen, Q. Zheng, Q. Xue, and J. K. Kim, "Ultralight graphene foam/conductive polymer composites for exceptional electromagnetic interference shielding", ACS Appl. Mater.& Interfaces, vol. 9, pp. 9059-9069, 2017.   DOI