Browse > Article

MLFMM 방법의 알고리즘  

Go, Il-Seok (인하대학교 전자공학과)
Lee, Hyeon-Su (인하대학교 전자공학과)
Keywords
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Skolnik, Introduction to Radar Systems, 2nd Edition, McGraw-Hill, 1980.
2 C. Balanis, Advanced Engineering Electromagnetics, 2nd Edition, Wiley, 2012.
3 H. Ling, R. Chou, and S. Lee, "Shooting and bouncing rays: Calculating the RCS of an arbitrary shaped cavity", IEEE Trans. Antennas Propagat., vol. 37, no. 2, pp. 194-205, Feb. 1989.   DOI
4 F. Obelleiro, J. Rodriguez, and R. Burkholder, "An Iterative physical optics approach for analyzing the electromagnetic scattering by large open-ended cavities", IEEE Trans. Antennas Propagat., vol. 43, no. 4, pp. 356-361, Apr. 1995.   DOI
5 B. Keller, "Geometrical theory of diffraction", J. Opt. Soc. Amer., vol. 52, pp. 116-130, Feb. 1962.   DOI
6 R. G. Kouyoumjian, P. H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface", IEEE Trans. Antennas Propagat., vol. 62, no. 11, pp. 1448-1462, Nov. 1974.
7 P. Ufimtsev, Fundamentals of the Physical Theory of Diffraction, John Willey & Sons, 2007.
8 P. Johansen, "Uniform physical theory of diffraction equivalent edge currents for truncated wedge strips", IEEE Trans. Antennas Propagat., vol. 44, no. 7, pp. 989-995, Jul. 1996.   DOI
9 R. F. Harrington, Field Computation by Moment Methods, IEEE, 1996.
10 W. C. Gibson, The Method of Moments in Electromagnetics, 2nd Edition, CRC Press, 2014.
11 V. Rokhlin, "Rapid solution of integral equations of classical potential theory", Journal of Computational Physisc vol. 60, no. 2, pp. 187-207, 1985.   DOI
12 N. Engheta, W. D. Murphy, and V. Rokhlin, "The fast multipole method(FMM) for electromagnetic scattering problems", IEEE Trans. Antennas Propagat., vol. 40, no. 6, pp. 634-641, Jun. 1992.   DOI
13 O. Ergul, "Fast multipole method for the solution of electromagnetic scattering problems", Master's Thesis, Dept. Elect. and Electron. Eng., Bilkent Univ., Ankara, Turkey, 2003.
14 O. Ergul, L. Gurel, The Multilevel Fast Multipole Algorithm (MLFMA) for Solving Large-scale Computational Electromagnetics Problems, John Wiley, 2014.
15 M. Rao, D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape", IEEE Trans. Antennas Propagat., vol. AP-30, no. 3, pp. 409-418, May 1982.
16 Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd Edition, SIAM, 2003.
17 B. Richard, R. Barrett, W. B. Michael, F. C. Tony, D. James, D. June, D. Jack, E. Victor, P. Roldan, R. Charles, and H. Van der Vorst, Templetes for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, 1994.
18 J. Shewchuk, An introduction to the conjugate gradient method without the agonizing pain", Aug. 1994.
19 R. J. Burkholder, D. Kwon, "High-frequency asymptotic acceleration of the fast multipole method", Radio Science, vol. 31, no. 5, pp. 1199-1206, Oct. 1996.   DOI
20 W. H. Press, Numerical Recipes: The Art of Scientific Computing, 3rd Edition, Cambridge University Press, 2007.
21 J. Lee, Z. Zhang, and C. Lu, "Incomplete LU preconditioning for large scale dense comples linear systems from electromagnetic wave scattering problems", Journal of Computational Physics, vol. 185, pp. 158-175, 2003.   DOI
22 J. Guan, S. Yan, and J. Jin, "An OpenMP-CUDA implementation of multilevel fast multipole algorithm for electromagnetic simulation in Multi-GPU computing systems", IEEE Trans. Antennas Propagat., vol. 61, no. 7, pp. 3607-3616, Jul. 2013.   DOI
23 J. Lee, Z. Zhang, and C. Lu, "Sparse inverse preconditioning of multilevel fast multipole algorithm for hybrid integral equations in electromagnetics", IEEE Trans. Antennas Propagat., vol. 52, no. 9, pp. 2277-2287, Sep. 2004.   DOI
24 T. Topa, A. Noga, and A. Karwowski, "Adapting MoM with RWG basis functions to GPU technology using CUDA", IEEE Antennas and Wireless Propag. Lett., vol. 10, pp. 480-483, Sep. 2011.   DOI
25 W. Chew, J. Jin, E. Michielssen, and J. Song, Fast and Efficient Algorithm in Computational Electromagnetics, Artech House, 2001.