Browse > Article
http://dx.doi.org/10.4313/JKEM.2022.35.4.7

Synthesis and Characterization of Triptycene-Based Triphenylamine Electron Donor Molecules  

Ryu, Youngjun (Department of Chemistry, The Catholic University of Korea)
An, Byeong-Kwan (Department of Chemistry, The Catholic University of Korea)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.35, no.4, 2022 , pp. 359-365 More about this Journal
Abstract
The development of efficient electron donor (or hole-transporting) molecules that can be used in various optoelectronic device fields is highly demanded. In this work, a novel class of triptycene-based three-dimensional (3D) triphenylamine (TI-TPA) derivatives with different end substituents was designed and prepared for transparent electron donor materials. Owing to the rigid 3D triptycene framework, the obtained TI-TPA derivatives had an amorphous morphology with high thermal decomposition temperature. The oxidation potential of these TI-TPA derivatives decreased as the electron donating strength of the end substituent increased. Among TI-TPA derivatives, TI-TPA-OMe exhibited the highest HOMO level (-5.31 eV) which is similar to that of Spiro-OMeTAD (-5.22 eV). In addition, TI-TPA-OMe was found to form a strong charge transfer complex with the triptycene-based acceptor TI-BQ, leading to a new absorption band at around 640 nm. These results can be applied for developing efficient electron donor materials that can mimic the advantages of the spiro-linked structure and TPA units of Spiro-OMeTAD.
Keywords
Triptycene; Triphenylamine; Spiro-OMeTAD; Electron donor; Hole transporting material;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. Cias, C. Slugovc, and G. Gescheidt, J. Phys. Chem. A, 115, 14519 (2011). [DOI: https://doi.org/10.1021/jp207585j]   DOI
2 Y. L. Xu, W. L. Ding, and Z. Z. Sun, Nanoscale, 10, 20329 (2018). [DOI: https://doi.org/10.1039/C8NR04730H]   DOI
3 Z. Hawash, L. K. Ono, and Y. Qi, Adv. Mater. Interfaces, 5, 1700623 (2018). [DOI: https://doi.org/10.1002/admi.201700623]   DOI
4 G. Ren, W. Han, Y. Deng, W. Wu, Z. Li, J. Guo, H. Bao, C. Liu, and W. Guo, J. Mater. Chem. A, 9, 4589 (2021). [DOI: https://doi.org/10.1039/D0TA11564A]   DOI
5 Y. Jiang and C. F. Chen, Eur. J. Org. Chem., 32, 6377 (2011). [DOI: https://doi.org/10.1002/ejoc.201100684]   DOI
6 M. J. Gu, Y. F. Wang, Y. Han, and C. F. Chen, Org. Biomol. Chem., 19, 10047 (2021). [DOI: https://doi.org/10.1039/D1OB01818C]   DOI
7 H. Li, K. Fu, A. Hagfeldt, M. Gratzel, S. G. Mhaisalkar, and A. C. Grimsdale, Angew. Chem. Int. Ed., 53, 4085 (2014). [DOI: https://doi.org/10.1002/anie.201310877]   DOI
8 S. Roquet, A. Cravino, P. Leriche, O. Aleveque, P. Frere, and J. Roncali, J. Am. Chem. Soc., 128, 3459 (2006). [DOI: https://doi.org/10.1021/ja058178e]   DOI
9 K. Rakstys, A. Abate, M. I. Dar, P. Gao, V. Jankauskas, G. Jacopin, E. Kamarauskas, S. Kazim, S. Ahmad, M. Gratzel, and M. K. Nazeeruddin, J. Am. Chem. Soc., 137, 16172 (2015). [DOI: https://doi.org/10.1021/jacs.5b11076]   DOI
10 S. Daskeviciute, N. Sakai, M. Franckevicius, M. Daskeviciene, A. Magomedov, V. Jankauskas, H. J. Snaith, and V. Getautis, Adv. Sci., 5, 1700811 (2018). [DOI: https://doi.org/10.1002/advs.201700811]   DOI
11 U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, and M. Gratzel, Nature, 395, 583 (1998). [DOI: https://doi.org/10.1038/26936]   DOI
12 M. M. Heravi, Z. Kheilkordi, V. Zadsirjan, M. Heydari, and M. Malmir, J. Organomet. Chem., 861, 17 (2018). [DOI: https://doi.org/10.1016/j.jorganchem.2018.02.023]   DOI
13 B. Kumari, M. Paramasivam, T. Mukherjee, S. Khandelwal, A. Dutta, and S. Kanvah, New J. Chem., 45, 4683 (2021). [DOI: https://doi.org/10.1039/D0NJ05505K]   DOI
14 T. Leijtens, I. K. Ding, T. Giovenzana, J. T. Bloking, M. D. McGehee, and A. Sellinger, ACS Nano, 6, 1455 (2012). [DOI: https://doi.org/10.1021/nn204296b]   DOI
15 J. H. Chong and M. J. MacLachlan, Chem. Soc. Rev., 38, 3301 (2009). [DOI: https://doi.org/10.1039/B900754G]   DOI