Browse > Article
http://dx.doi.org/10.4313/JKEM.2022.35.2.2

Recent Progress in Energy Harvesters Based on Flexible Thermoelectric Materials  

Park, Jong Min (Department of Materials Science and Metallurgical Engineering, School of Materials Science and Engineering, Kyungpook National University (KNU))
Kim, Seoha (Department of Materials Science and Metallurgical Engineering, School of Materials Science and Engineering, Kyungpook National University (KNU))
Na, Yujin (Department of Materials Science and Metallurgical Engineering, School of Materials Science and Engineering, Kyungpook National University (KNU))
Park, Kwi-Il (Department of Materials Science and Metallurgical Engineering, School of Materials Science and Engineering, Kyungpook National University (KNU))
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.35, no.2, 2022 , pp. 119-128 More about this Journal
Abstract
Recent advancement of Internet of Things (IoT) and energy harvesting technology enable realization of flexible thermoelectric energy harvester (f-TEH), with technological prowess for use in biomedical monitoring system integrated applications. To expand a flexible thermoelectric energy harvesting platform, the f-TEH must be required for optimized flexible thermoelectric materials and device structure. In response to these demands related to thermoelectric energy harvesting, many research groups have investigated various f-TEHs applied as a power source for wearable electronics. As a key member of the f-TEH, film-based f-TEHs possess significant applicability in research to realize self-powered wearable electronics, owing to their excellent flexibility, low thermal conductivity, and convenient fabrication process. Thus, based on the rapid growth of thermoelectric film technology, this review aims to overview comprehensively the f-TEH made of various inorganic/organic thermoelectric materials including developed fabrication methods, high thermoelectric performance, and wide-range applications.
Keywords
Thermoelectric; Flexible; Wearable; Energy harvesting;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Shang, T. Li, D. Luo, L. Yu, Q. Zou, D. Huang, L. Xiao, H. Gu, Z. Ren, and F. Ding, ACS Appl. Mater. Interfaces, 12, 7358 (2020). [DOI: https://doi.org/10.1021/acsami.9b21771]   DOI
2 D. Abol-Fotouh, B. Dorling, O. Zapata-Arteaga, X. Rodriguez-Martinez, A. Gomez, J. S. Reparaz, A. Laromaine, A. Roig, and M. Campoy-Quiles, Energy Environ. Sci., 12, 716 (2019). [DOI: https://doi.org/10.1039/c8ee03112f]   DOI
3 M. H. Lee, Y. H. Kang, J. Kim, Y. K. Lee, and S. Y. Cho, Adv. Energy Mater., 9, 1900914 (2019). [DOI: https://doi.org/10.1002/aenm.201900914]   DOI
4 J. Kim, E. J. Bae, Y. H. Kang, C. Lee, and S. Y. Cho, Nano Energy, 74, 104824 (2020). [DOI: https://doi.org/10.1016/j.nanoen.2020.104824]   DOI
5 D. Tan, J. Zhao, C. Gao, H. Wang, G. Chen, and D. Shi, ACS Appl. Mater. Interfaces, 9, 21820 (2017). [DOI: https://doi.org/10.1021/acsami.7b04938]   DOI
6 Y. Guo, C. Dun, J. Xu, P. Li, W. Huang, J. Mu, C. Hou, C. A. Hewitt, Q. Zhang, Y. Li, D. L. Carroll, and H. Wang, ACS Appl. Mater. Interfaces, 10, 33316 (2018). [DOI: https://doi.org/10.1021/acsami.8b10720]   DOI
7 L. Liang, G. Chen, and C. Y. Guo, Mater. Chem. Front., 1, 380 (2017). [DOI: https://doi.org/10.1039/c6qm00061d]   DOI
8 B. Russ, A. Glaudell, J. J. Urban, M. L. Chabinyc, and R. A. Segalman, Nat. Rev. Mater., 1, 16050 (2016). [DOI: https://doi.org/10.1038/natrevmats.2016.50]   DOI
9 S. K. Kihoi, H. Kim, H. Jeong, H. Kim, J. Ryu, S. Yi, and H. S. Lee, J. Alloys Compd., 806, 361 (2019). [DOI: https://doi.org/10.1016/j.jallcom.2019.07.220]   DOI
10 A. Nozariasbmarz, H. Collins, K. Dsouza, M. H. Polash, M. Hosseini, M. Hyland, J. Liu, A. Malhotra, F. M. Ortiz, F. Mohaddes, V. P. Ramesh, Y. Sargolzaeiaval, N. Snouwaert, M. C. Ozturk, and D. Vashaee, Appl. Energy, 258, 114069 (2020). [DOI: https://doi.org/10.1016/j.apenergy.2019.114069]   DOI
11 D. W. Lee, D. G. Jeong, J. H. Kim, H. S. Kim, G. Murillo, G. H. Lee, H. C. Song, and J. H. Jung, Nano Energy, 76, 105066 (2020). [DOI: https://doi.org/10.1016/j.nanoen.2020.105066]   DOI
12 V. Karthikeyan, J. U. Surjadi, J.C.K. Wong, V. Kannan, K. H. Lam, X. Chen, Y. Lu, and V.A.L. Roy, J. Power Sources, 455, 227983 (2020). [DOI: https://doi.org/10.1016/j.jpowsour.2020.227983]   DOI
13 J. He and T. M. Tritt, Science, 357, 1369 (2017). [DOI: https://doi.org/10.1126/science.aak9997]   DOI
14 W. Y. Chen, X. L. Shi, J. Zou, and Z. G. Chen, Nano Energy, 81, 105684 (2021). [DOI: https://doi.org/10.1016/j.nanoen.2020.105684]   DOI
15 S. J. Kim, J. H. We, and B. J. Cho, Energy Environ. Sci., 7, 1959 (2014). [DOI: https://doi.org/10.1039/c4ee00242c]   DOI
16 S. Y. Hong, J. H. Oh, H. Park, J. Y. Yun, S. W. Jin, L. Sun, G. Zi, and J. S. Ha, NPG Asia Mater., 9, e448 (2017). [DOI: https://doi.org/10.1038/am.2017.194]   DOI
17 X. Wang, Y. Gu, Z. Xiong, Z. Cui, and T. Zhang, Adv. Mater., 26, 1336 (2014). [DOI: https://doi.org/10.1002/adma.201304248]   DOI
18 K. Yusupov, S. Stumpf, S. You, A. Bogach, P. M. Martinez, A. Zakhidov, U. S. Schubert, V. Khovaylo, and A. Vomiero, Adv. Funct. Mater., 28, 1801246 (2018). [DOI: https://doi.org/10.1002/adfm.201801246]   DOI
19 Y. Wang, W. D. Liu, X. L. Shi, M. Hong, L. J. Wang, M. Li, H. Wang, J. Zou, and Z. G. Chen, Chem. Eng. J., 391, 123513 (2020). [DOI: https://doi.org/10.1016/j.cej.2019.123513]   DOI
20 Z. G. Chen, X. Shi, L. D. Zhao, and J. Zou, Prog. Mater. Sci., 97, 283 (2018). [DOI: https://doi.org/10.1016/j.pmatsci.2018.04.005]   DOI
21 H. Choi, K. Jeong, J. Chae, H. Park, J. Baeck, T. H. Kim, J. Y. Song, J. Park, K. H. Jeong, and M. H. Cho, Nano Energy, 47, 374 (2018). [DOI: https://doi.org/10.1016/j.nanoen.2018.03.009]   DOI
22 B. Lee, H. Cho, K. T. Park, J. S. Kim, M. Park, H. Kim, Y. Hong, and S. Chung, Nat. Commun., 11, 5948 (2020). [DOI: https://doi.org/10.1038/s41467-020-19756-z]   DOI
23 D. Y. Hyeon, C. Nam, S. S. Ham, G. T. Hwang, S. Yi, K. T. Kim, and K. I. Park, Adv. Electron. Mater., 7, 2000969 (2021). [DOI: https://doi.org/10.1002/aelm.202000969]   DOI
24 S. Kim, D. Y. Hyeon, S. S. Ham, J. Youn, H. S. Lee, S. Yi, K. T. Kim, and K. I. Park, Appl. Surf. Sci., 558, 149784 (2021). [DOI: https://doi.org/10.1016/j.apsusc.2021.149784]   DOI
25 L. Huang, S. Lin, Z. Xu, H. Zhou, J. Duan, B. Hu, and J. Zhou, Adv. Mater., 32, 1902034 (2020). [DOI: https://doi.org/10.1002/adma.201902034]   DOI
26 D. L. Wen, H. T. Deng, X. Liu, G. K. Li, X. R. Zhang, and X. S. Zhang, Microsyst. Nanoeng., 6, 68 (2020). [DOI: https://doi.org/10.1038/s41378-020-0179-6]   DOI
27 S. K. Kihoi and H. S. Lee, Sustain. Energ. Fuels, 4, 5645 (2020). [DOI: https://doi.org/10.1039/d0se01081b]   DOI
28 M. Hong, Z. G. Chen, and J. Zou, Chinese Phys. B, 27, 048403 (2018). [DOI: https://doi.org/10.1088/1674-1056/27/4/048403]   DOI
29 Y. Xiao and L. D. Zhao, npj Quantum Mater., 3, 55 (2018). [DOI: https://doi.org/10.1038/s41535-018-0127-y]   DOI
30 L. D. Zhao, S. H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, and M. G. Kanatzidis, Nature, 508, 373 (2014). [DOI: https://doi.org/10.1038/nature13184]   DOI
31 Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, and G. J. Snyder, Nature, 473, 66 (2011). [DOI: https://doi.org/10.1038/nature09996]   DOI
32 T. Ding, K. H. Chan, Y. Zhou, X. Q. Wang, Y. Cheng, T. Li, and G. W. Ho, Nat. Commun., 11, 6006 (2020). [DOI: https://doi.org/10.1038/s41467-020-19867-7]   DOI
33 C. S. Kim, H. M. Yang, J. Lee, G. S. Lee, H. Choi, Y. J. Kim, S. H. Lim, S. H. Cho, and B. J. Cho, ACS Energy Lett., 3, 501 (2018). [DOI: https://doi.org/10.1021/acsenergylett.7b01237]   DOI
34 K. A. Morgan, T. Tang, I. Zeimpekis, A. Ravagli, C. Craig, J. Yao, Z. Feng, D. Yarmolich, C. Barker, H. Assender, and D. W. Hewak, Sci. Rep., 9, 4393 (2019). [DOI: https://doi.org/10.1038/s41598-019-41000-y]   DOI
35 N. Kim, S. Lienemann, I. Petsagkourakis, D. Alemu Mengistie, S. Kee, T. Ederth, V. Gueskine, P. Leclere, R. Lazzaroni, X. Crispin, and K. Tybrandt, Nat. Commun., 11, 1424 (2020). [DOI: https://doi.org/10.1038/s41467-020-15135-w]   DOI
36 K. K. Jung, Y. Jung, C. J. Choi, J. M. Lee, and J. S. Ko, Curr. Appl. Phys., 16, 1442 (2016). [DOI: https://doi.org/10.1016/j.cap.2016.08.010]   DOI
37 A. Kumar, R. Kumar, and D. K. Satapathy, Physica B, 593, 412275 (2020). [DOI: https://doi.org/10.1016/j.physb.2020.412275]   DOI
38 Y. Lu, X. Li, K. Cai, M. Gao, W. Zhao, J. He, and P. Wei, ACS Appl. Mater. Interfaces, 13, 631 (2021). [DOI: https://doi.org/10.1021/acsami.0c18577]   DOI
39 T. Sun, B. Zhou, Q. Zheng, L. Wang, W. Jiang, and G. J. Snyder, Nat. Commun., 11, 572 (2020). [DOI: https://doi.org/10.1038/s41467-020-14399-6]   DOI
40 C. K. Mytafides, L. Tzounis, G. Karalis, P. Formanek, and A. S. Paipetis, ACS Appl. Mater. Interfaces, 13, 11151 (2021). [DOI: https://doi.org/10.1021/acsami.1c00414]   DOI
41 X. Zhao, W. Han, C. Zhao, S. Wang, F. Kong, X. Ji, Z. Li, and X. Shen, ACS Appl. Mater. Interfaces, 11, 10301 (2019). [DOI: https://doi.org/10.1021/acsami.8b21716]   DOI
42 T. Koskinen, V. Khayrudinov, F. Emadi, H. Jiang, T. Haggren, H. Lipsanen, and I. Tittonen, ACS Appl. Energ. Mater., 4, 14727 (2021). [DOI: https://doi.org/10.1021/acsaem.1c03405]   DOI