Browse > Article
http://dx.doi.org/10.4313/JKEM.2022.35.1.12

A Study on the Growth Temperature of Atomic Layer Deposition for Photocurrent of ZnO-Based Transparent Flexible Ultraviolet Photodetector  

Choi, Jongyun (Department of Nano & Semiconductor Engineering, Korean Polytechnic University)
Lee, Gun-Woo (Department of IT Semiconductor Convergence Engineering, Korean Polytechnic University)
Na, Young-Chae (Department of IT Semiconductor Convergence Engineering, Korean Polytechnic University)
Kim, Jeong-Hyeon (Department of Nano & Semiconductor Engineering, Korean Polytechnic University)
Lee, Jae-Eun (Department of Nano & Semiconductor Engineering, Korean Polytechnic University)
Choi, Ji-Hyeok (Department of Nano & Semiconductor Engineering, Korean Polytechnic University)
Lee, Sung-Nam (Department of Nano & Semiconductor Engineering, Korean Polytechnic University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.35, no.1, 2022 , pp. 80-85 More about this Journal
Abstract
ZnO-based transparent conductive films have been widely studied to achieve high performance optoelectronic devices such as next generation flexible and transparent display systems. In order to achieve a transparent flexible ZnO-based device, a low temperature growth technique using a flexible polymer substrate is required. In this work, high quality flexible ZnO films were grown on colorless polyimide substrate using atomic layer deposition (ALD). Transparent ZnO films grown from 80 to 200℃ were fabricated with a metal-semiconductor-metal structure photodetectors (PDs). As the growth temperature of ZnO film increases, the photocurrent of UV PDs increases, while the sensitivity of that decreases. In addition, it is found that the response times of the PDs become shorter as the growth temperature increases. Based on these results, we suggest that high-quality ZnO film can be grown below 200℃ in an atomic layer deposition system, and can be applied to transparent and flexible UV PDs with very fast response time and high photocurrent.
Keywords
Photodetector; Zinc oxide; Atomic layer deposition; Flexible substrate; Colorless polyimide;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Li, D. Han, Z. Yi, J. Dong, S. Zhang, X. Zhang, and Y. Wang, IEEE Trans. Electron Devices, 66, 2965 (2019). [DOI: https://doi.org/10.1109/TED.2019.2915625]   DOI
2 L. Petti, N. Munzenrieder, C. Vogt, H. Faber, L. Buthe, G. Cantarella, F. Bottacchi, T. D. Anthopoulos, and G. Troster, Appl. Phys. Rev., 3, 021303 (2016). [DOI: https://doi.org/10.1063/1.4953034]   DOI
3 J. Sun, D. A. Mourey, D. Zhao, and T. N. Jackson, J. Electron. Mater., 37, 755 (2007). [DOI: https://doi.org/10.1007/s11664-007-0362-7]   DOI
4 D. K. Kwon, S. J. Lee, and J. M. Myoung, Nanoscale, 8, 16677 (2016). [DOI: https://doi.org/10.1039/c6nr05256h]   DOI
5 X. T. Hao, J. Ma, D. H. Zhang, Y. G. Yang, H. L. Ma, C. F. Cheng, and X. D. Liu, Mater. Sci. Eng. B, 90, 50 (2002). [DOI: https://doi.org/10.1016/S0921-5107(01)00828-5]   DOI
6 Manju, M. Jain, S. Madas, P. Vashishtha, P. Rajput, G. Gupta, M. U. Kahaly, K. Ozdogan, A. Vij, and A. Thakur, Sci. Rep., 10, 17364 (2020). [DOI: https://doi.org/10.1038/s41598-020-74436-8]   DOI
7 A. Rezk and I. Saadat, IEEE Electron Device Lett., 40, 240 (2019). [DOI: https://doi.org/10.1109/LED.2019.2890831]   DOI
8 H. Li, J. Huang, Q. Zheng, Y. Zheng, Vacuum, 172, 109089 (2020). [DOI: https://doi.org/10.1016/j.vacuum.2019.109089]   DOI
9 S. H. Lee, S. B. Kim, Y. J. Moon, S. M. Kim, H. J. Jung, M. S. Seo, K. M. Lee, S. K. Kim, and S. W. Lee, ACS Photonics, 4, 2937 (2017). [DOI: https://doi.org/10.1021/acsphotonics.7b01054]   DOI
10 D. Lee, M. L. Seol, G. Motilal, B. Kim, D. I. Moon, J. W. Han, and M. Meyyappan, ACS Sens., 5, 1028 (2020). [DOI: https://doi.org/10.1021/acssensors.9b02544]   DOI
11 K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature, 432, 488 (2004). [DOI: https://doi.org/10.1038/nature03090]   DOI
12 J. H. Mun, H. J. Lee, S. H. Lee, T. S. Yoon, S. H. Han, and D. H. Kim, ACS Appl. Nano Mater., 3, 10922 (2020). [DOI: https://doi.org/10.1021/acsanm.0c02181]   DOI
13 K. Liu, M. Sakurai, and M. Aono, Sensors, 10, 8604 (2010). [DOI: https://doi.org/10.3390/s100908604]   DOI
14 S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, and H. Shen, J. Cryst. Growth, 225, 110 (2001). [DOI: https://doi.org/10.1016/s0022-0248(01)00830-2]   DOI
15 Y. Duan, M. Cong, D. Jiang, W. Zhang, X. Yang, C. Shan, X. Zhou, M. Li, and Q. Li, Adv. Mater. Interfaces, 6, 1900470 (2019). [DOI: https://doi.org/10.1002/admi.201900470]   DOI
16 H. K. Kim, D. G. Kim, K. S. Lee, M. S. Huh, S. H. Jeong, and K. I. Kim, Appl. Phys. Lett., 86, 183503 (2005). [DOI: https://doi.org/10.1063/1.1923182]   DOI
17 S. M. George, Chem. Rev., 110, 111 (2010). [DOI: https://doi.org/10.1021/cr900056b]   DOI
18 G. B. Lee, S. H. Song, M. W. Lee, Y. J. Kim, B. H. Choi, Appl. Surf. Sci., 535, 147731 (2021). [DOI: https://doi.org/10.1016/j.apsusc.2020.147731]   DOI
19 S. Bai, W. Wu, Y. Qin, N. Cui, D. J. Bayerl, and X. Wang, Adv. Funct. Mater., 21, 4464 (2011). [DOI: https://doi.org/10.1002/adfm.201101319]   DOI
20 S. J. Young, Y. H. Liu, M.D.N.I. Shiblee, K. Ahmed, L. T. Lai, L. Nagahara, T. Thundat, T. Yoshida, S. Arya, H. Furukawa, and A. Khosla, ACS Appl. Electron. Mater., 2, 3522 (2020). [DOI: https://doi.org/10.1021/acsaelm.0c00556]   DOI
21 A. J. Karttunen, L. Sarnes, R. Townsend, J. Mikkonen, and M. Karppinen, Adv. Electron. Mater., 3, 1600459 (2017). [DOI: https://doi.org/10.1002/aelm.201600459]   DOI