Browse > Article
http://dx.doi.org/10.4313/JKEM.2021.34.6.6

Neutron Irradiation Effect of YBa2Cu3O7-y Superconductor  

Lee, Sang Heon (Department of Electronic Engineering, Sunmoon University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.34, no.6, 2021 , pp. 438-441 More about this Journal
Abstract
The electrical characteristics of single-crystal composite superconductors produced by a melting process were studied by neutron irradiation. In order to improve the current characteristics of the YBa2Cu3O7-y superconductor, it is necessary to form an effective flux pinning center inside the superconductor. In this study, an increase in flux pinning was attempted through neutron irradiation onto YBa2Cu3O7-y superconductors. The neutron irradiation was performed at 30 MeV for 500 sec, The electrical properties of the superconductors were measured in a magnetic field of 5 Tesla at 50 K using a magnetic properties measurement system (MPMS). After neutron irradiation, the critical current density of the YBa2Cu3O7-y superconductor in a 1 Tesla magnetic field was 1×105 A/cm2. Once neutrons were irradiated at 30 MeV and 10 μA for 500 sec, the critical current density was observed to increase significantly. When neutrons are irradiated to a superconductor, micro-defects are created in the superconductor, and they act as flux pinning centers that hold the magnetic field generated when an electric current flows.
Keywords
YBCO; Bulk; Neutron; Irradiation; Magnetic properties measurement;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. H. Durrell, A. R. Dennis, J. Jaroszynski, M. D. Ainslie, K.G.B. Palmer, Y. H. Shi, A. M. Campbell, J. Hull, M. Strasik, E. E. Hellstrom, Supercond. Sci. Technol, 27, 082001 (2014). [DOI:https://doi.org/10.1088/0953-2048/27/8/082001]   DOI
2 D. Behera, T. Mohanty, S. K. Dash, T. Banerjee, D. Kanjilal, and N. C. Mishra, Radiat. Meas., 36, 125 (2003). [DOI: https://doi.org/10.1016/S1350-4487(03)00108-2]   DOI
3 M. K. Marhas, K. Balakrishnan, P. Saravanan, V. Ganesan, T. Srinivasan, D. Kanjilal, G. K. Mehta, M. Vedwyas, S. B. Ogale, S. P. Pai, M.S.R. Rao, R. Pinto, G. M. Rao, S. Senthilnathan, and S. Mohan, Nucl. Instrum. Methods Phys. Res., Sect. B, 156, 21 (1999). [DOI: https://doi.org/10.1016/S0168-583X(99)00270-0]   DOI
4 R. Vlastou, E. N. Gazis, C. T. Papadopoulos, E. Liarocapis, D. Palles, N. Poulakis, S. Kossionides, M. Kokkoris, G. Kaliabakos, W. Assmann, and P. Berbeich, Nucl. Instrum. Methods Phys. Res., Sect. B, 136, 1286 (1998). [DOI: https://doi.org/10.1016/s0168-583x(97)00845-8]   DOI
5 U. Topal, L. Dorosinskii, and H. Sozeri, Phys. C, 407, 49 (2004). [DOI: https://doi.org/10.1016/j.physc.2004.04.009]   DOI
6 U. Topal, L. Dorosinskiia, H. Ozkan, and H. Yavuz, Phys. C, 388, 401 (2003). [DOI: https://doi.org/10.1016/s0921-4534(02)02539-x]   DOI
7 M. E. Amiryar and K. R. Pullen, Appl. Sci., 7, 286 (2017). [DOI: https://doi.org/10.3390/app7030286]   DOI