Browse > Article
http://dx.doi.org/10.4313/JKEM.2021.34.5.271

Recent Progress in Magneto-Mechano-Electric Generators  

Hwang, Geon-Tae (Department of Materials Science and Engineering, Pukyong National University)
Ryu, Jungho (School of Materials Science & Engineering, Yeungnam University)
Yoon, Woon-Ha (Department of Functional Ceramics, Korea Institute of Materials Science (KIMS))
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.34, no.5, 2021 , pp. 271-282 More about this Journal
Abstract
The internet of things (IoT) technology is a key component for the advent of 4th industrial revolution, which is the network of home appliances, infrastructures, and vehicles to remotely investigate these systems. For the operation of compact IoT devices, batteries are widely used as electric power, and the limited lifetime of batteries inevitably leads to periodic replacement. Magneto-mechano-electric (MME) generators may be alternatives to batteries inside the IoT devices by converting stray magnetic field into electric energy, since we are always surrounded by ambient alternating current (AC) magnetic fields induced from electric power transmission lines everywhere. This article reviews the recent domestic research progress in high-performance MME generators and their application field for IoT and electronic devices.
Keywords
Magneto-mechano-electric; Magnetic field; Energy harvesting; Self-powered;
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. R. Fan, Z. Q. Tian, and Z. L. Wang, Nano Energy, 1, 328 (2012). [DOI: https://doi.org/10.1016/j.nanoen.2012.01.004]   DOI
2 J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, Future Gener. Comput. Syst., 29, 1645 (2013). [DOI: https://doi.org/10.1016/j. future.2013.01.010]   DOI
3 A. K. Kanal and T. Kovacshazy, Proc. 2019 20th International Carpathian Control Conference (ICCC) (IEEE, Krakow-Wieliczka, Poland, 2019) p. 1-5. [DOI: https://doi.org/10.1109/CarpathianCC.2019.8766006]   DOI
4 T. Nayak, B. Swain, P. P. Nayak, and S. Bhuyan, Trans. Electr. Electron. Mater., 22, 250 (2021). [DOI: https://doi.org/10.1007/s42341-020-00227-7]   DOI
5 P. Hosseinnezhad, S. Behnia, and S. Fathizadeh, Trans. Electr. Electron. Mater., 22, 257 (2021). [DOI: https://doi.org/10.1007/s42341-020-00228-6]   DOI
6 A. Harb, Renewable Energy, 36, 2641 (2011). [DOI: https://doi.org/10.1016/j.renene.2010.06.014]   DOI
7 J. Ryu, J. E. Kang, Y. Zhou, S. Y. Choi, W. H. Yoon, D. S. Park, J. J. Choi, B. D. Hahn, C. W. Ahn, J. W. Kim, Y. D. Kim, S. Priya, S. Y. Lee, S. Jeong, and D. Y. Jeong, Energy Environ. Sci., 8, 2402 (2015). [DOI: https://doi.org/10.1039/C5EE00414D]   DOI
8 V. Annapureddy, M. Kim, H. Palneedi, H. Y. Lee, S. Y. Choi, W. H. Yoon, D. S. Park, J. J. Choi, B. D. Hahn, C. W. Ahn, J. W. Kim, D. Y. Jeong, and J. Ryu, Adv. Energy Mater., 6, 1601244 (2016). [DOI: https://doi.org/10.1002/aenm.201601244]   DOI
9 R. Haight, W. Haensch, and D. Friedman, Science, 353, 124 (2016). [DOI: https://doi.org/10.1126/science.aag0476]   DOI
10 R. Sriramdas, M. G. Kang, M. Meng, M. Kiani, J. Ryu, M. Sanghadasa, and S. Priya, Adv. Energy Mater., 10, 1903689 (2020). [DOI: https://doi.org/10.1002/aenm.201903689]   DOI
11 V. Annapureddy, S. M. Na, G. T. Hwang, M. G. Kang, R. Sriramdas, H. Palneedi, W. H. Yoon, B. D. Hahn, J. W. Kim, C. W. Ahn, D. S. Park, J. J. Choi, D. Y. Jeong, A. B. Flatau, M. Peddigari, S. Priya, K. H. Kim, and J. Ryu, Energy Environ. Sci., 11, 818 (2018). [DOI: https://doi.org/10.1039/C7EE03429F]   DOI
12 H. Song, D. R. Patil, W. H. Yoon, K. H. Kim, C. Choi, J. H. Kim, G. T. Hwang, D. Y. Jeong, and J. Ryu, Energy Environ. Sci., 13, 4238 (2020). [DOI: https://doi.org/10.1039/D0EE01574A]   DOI
13 M. J. Wilhelm, C. Schmid, D. Hammel, S. Kerber, H. M. Loick, M. Herrmann, and H. H. Scheld, Ann. Thorac. Surg., 64, 1707 (1997). [DOI: https://doi.org/10.1016/S0003-4975(97)00989-2]   DOI
14 G. T. Hwang, V. Annapureddy, J. H. Han, D. J. Joe, C. Baek, D. Y. Park, D. H. Kim, J. H. Park, C. K. Jeong, K. I. Park, J. J. Choi, D. K. Kim, J. Ryu, and K. J. Lee, Adv. Energy Mater., 6, 1600237 (2016). [DOI: https://doi.org/10.1002/aenm.201600237]   DOI
15 V. Annapureddy, H. Y. Lee, W. H. Yoon, H. J. Woo, J. H. Lee, H. Palneedi, H. J. Kim, J. J. Choi, D. Y. Jeong, S. N. Yi, and J. Ryu, Appl. Phys. Lett., 109, 093901 (2016). [DOI: https://doi.org/10.1063/1.4962047]   DOI
16 C. Wu, A. C. Wang, W. Ding, H. Guo, and Z. L. Wang, Adv. Energy Mater., 9, 1802906 (2019). [DOI: https://doi.org/10.1002/aenm.201802906]   DOI
17 H. E. Lee, J. H. Park, D. Jang, J. H. Shin, T. H. Im, J. H. Lee, S. K. Hong, H. S. Wang, M. S. Kwak, M. Peddigari, C. K. Jeong, Y. Min, C. H. Park, J. J. Choi, J. Ryu, W. H. Yoon, D. Kim, K. J. Lee, and G. T. Hwang, Nano Energy, 75, 104951 (2020). [DOI: https://doi.org/10.1016/j.nanoen.2020.104951]   DOI
18 Z. L. Wang, T. Jiang, and L. Xu, Nano Energy, 39, 9 (2017). [DOI: https://doi.org/10.1016/j.nanoen.2017.06.035]   DOI
19 K. W. Lim, M. Peddigari, C. H. Park, H. Y. Lee, Y. Min, J. W. Kim, C. W. Ahn, J. J. Choi, B. D. Hahn, J. H. Choi, D. S. Park, J. K. Hong, J. T. Yeom, W. H. Yoon, J. Ryu, S. N. Yi, and G. T. Hwang, Energy Environ. Sci., 12, 666 (2019). [DOI: https://doi.org/10.1039/C8EE03008A]   DOI
20 G. D. Nelson, Tex. Heart Inst. J., 20, 12 (1993). [DOI: https://doi.org/10.1111/j.1540-8159.1982.tb02226.x]   DOI