Browse > Article
http://dx.doi.org/10.4313/JKEM.2021.34.4.246

Effect of Hydrogen Dilution Ratio and Crystallinity of nc-Si:H Thin Film on Realizing High Mobility TFTs  

Choi, Jiwon (Department of Electrical and Computer Engineering, Sungkyunkwan University)
Kim, Taeyong (Department of Electrical and Computer Engineering, Sungkyunkwan University)
Pham, Duy phong (Department of Electrical and Computer Engineering, Sungkyunkwan University)
Jo, Jaewoong (Department of Electrical and Computer Engineering, Sungkyunkwan University)
Cui, Ziyang (Department of Electrical and Computer Engineering, Sungkyunkwan University)
Xin, Dongxu (Department of Electrical and Computer Engineering, Sungkyunkwan University)
Yi, Junsin (College of Information and Communication Engineering, Sungkyunkwan University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.34, no.4, 2021 , pp. 246-250 More about this Journal
Abstract
TFTs technologies with as high mobility as possible is essential for high-performance large displays. TFTs using nanocrystalline silicon thin films can achieve higher mobility. In this work, the change of the crystalline volume fraction at different hydrogen dilution ratios was investigated by depositing nc-Si:H thin films using PECVD. It was observed that increasing hydrogen dilution ratio increased not only the crystalline volume fraction but also the crystallite size. The thin films with a high crystalline volume fraction (55%) and a low defect density (1017 cm-3·eV-1) were used as top gate TFTs channel layer, leading to a high mobility (55 cm2/V·s). We suggest that TFTs of high mobility to meet the need of display industries can be benefited by the formation of thin film with high crystalline volume fraction as well as low defect density as a channel layer.
Keywords
Thin film transistor; High mobility; Nanocrystalline silicon; Crystalline volume fraction; Hydrogen dilution ratio;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. Dushaq, A. Nayfeh, and M. Rasras, Superlattices Microstruct., 107, 172 (2017). [DOI: https://doi.org/10.1016/j.spmi.2017.03.052]   DOI
2 A. M. Ali and H. Kobayashi, J. Non-Cryst. Solids, 385, 17 (2014). [DOI: https://doi.org/10.1016/j.jnoncrysol.2013.10.019]   DOI
3 C. H. Lee, A. Sazonov, and A. Nathan, Appl. Phys. Lett., 86, 222106 (2005). [DOI: https://doi.org/10.1063/1.1942641]   DOI
4 M. R. Esmaeili-Rad, F. Li, A. Sazonov, and A. Nathan, J. Appl. Phys., 102, 064512 (2007). [DOI: https://doi.org/10.1063/1.2784008]   DOI
5 C. H. Lee, D. Striakhilev, and A. Nathan, IEEE Trans. Electron Devices, 54, 45 (2007). [DOI: https://doi.org/10.1109/TED.2006.887220]   DOI
6 C. H. Lee, W. S. Wong, A. Sazonov, and A. Nathan, Thin Solid Films, 597, 151 (2015). [DOI: https://doi.org/10.1016/j.tsf.2015.11.055]   DOI
7 Y. Wang, H. Liu, and W. Shen, Nanoscale Res. Lett., 13, 234 (2018). [DOI: https://doi.org/10.1186/s11671-018-2641-z]   DOI
8 M. Hara, Thin Solid Films, 519, 3922 (2011). [DOI: https://doi.org/10.1016/j.tsf.2011.01.283]   DOI
9 K. Y. Chan, A. Gordijn, H. Stiebig, and D. Knipp, Phys. Status Solidi C, 7, 1144 (2010). [DOI: https://doi.org/10.1002/pssc.200982816]   DOI
10 M. H. Juang, Y. S. Peng, and B. J. Liu, Thin Solid Films, 519, 3902 (2011). [DOI: https://doi.org/10.1016/j.tsf.2011.01.265]   DOI
11 V. Kanneboina, R. MadaKa, and P. Agarwal, Mater. Today Commun., 15, 18 (2018). [DOI: https://doi.org/10.1016/j.mtcomm.2018.02.023]   DOI
12 N. K. Maaloul, M. Kraini, K. Khirouni, and H. Khemakhem, J. Electron. Mater., 48, 3881 (2019). [DOI: https://doi.org/10.1007/s11664-019-07143-4]   DOI
13 J. H. Shim, J. H. Kim, and N. H. Cho, Trans. Electr. Electron. Mater., 20, 85 (2019). [DOI: https://doi.org/10.1007/s42341-019-00104-y]   DOI
14 Y. L. Hsieh, L. H. Kau, H. J. Huang, C. C. Lee, Y. K. Fuh, and T. T. Li, Coatings, 8, 238 (2018). [DOI: https://doi.org/10.3390/coatings8070238]   DOI
15 A. Jadhavar, A. Pawbake, R. Waykar, V. Jadkar, R. Kulkarni, A. Bhorde, S. Rondiya, A. Funde, D. Patil, A. Date, H. Pathan, and S. Jadkar, Energy Procedia, 110, 45 (2017). [DOI: https://doi.org/10.1016/j.egypro.2017.03.104]   DOI
16 S. B. Amor, R. Bousbih, R. Ouertani, W. Dimassi, and H. Ezzaouia, Sol. Energy, 103, 12 (2014). [DOI: https://doi.org/10.1016/j.solener.2014.02.004]   DOI
17 A. Risteska, K. Y. Chan, A. Gordijn, H. Stiebig, and D. Knipp, J. Disp. Technol., 8, 27 (2012). [DOI: https://doi.org/10.1109/JDT.2011.2166055]   DOI
18 C. H. Lee, A. Sazonov, and A. Nathan, J. Non-Cryst. Solids, 352, 1732 (2006). [DOI: https://doi.org/10.1016/j.jnoncrysol.2005.11.149]   DOI
19 K. Y. Chan, D. Knipp, A. Gordijn, and H. Stiebig, J. Appl. Phys., 104, 054506 (2008). [DOI: https://doi.org/10.1063/1.2973465]   DOI
20 S. B. Amor, H. Meddeb, R. Daik, A. B. Othman, S. B. Slama, W. Dimassi, and H. Ezzaouia, Appl. Surf. Sci., 360, 572 (2016). [DOI: https://doi.org/10.1016/j.apsusc.2015.10.207]   DOI
21 Y. Huang, J. Liu, J. Wang, D. Bao, and S. Huang, Surf. Eng. Appl. Electrochem., 55, 259 (2019). [DOI: https://doi.org/10.3103/S1068375519030098]   DOI
22 J. I. Son, H. J. Nam, and N. H. Cho, Int. J. Photoenergy, 2012, 1 (2012). [DOI: https://doi.org/10.1155/2012/643895]   DOI
23 H. K. Malik, S. Juneja, and S. Kumar, J. Theor. Appl. Phys., 13, 107 (2019). [DOI: https://doi.org/10.1007/s40094-019-0325-4]   DOI
24 K. Y. Chan, D. Knipp, A. Gordijn, and H. Stiebig, J. Non-Cryst. Solids, 354, 2505 (2008). [DOI: https://doi.org/10.1016/j.jnoncrysol.2007.09.035]   DOI