Browse > Article
http://dx.doi.org/10.4313/JKEM.2021.34.3.214

Deep Level Defect Transient Spectroscopy Analysis of 4H-SiC SBD and JBS Diodes  

Byun, Dong-Wook (Department of Electronic Materials Engineering, Kwang-woon University)
Shin, Myeong-Cheol (Department of Electronic Materials Engineering, Kwang-woon University)
Moon, Jeong Hyun (Power Semiconductor Research Center, Korean Electrotechnology Research Institute (KERI))
Bahng, Wook (Power Semiconductor Research Center, Korean Electrotechnology Research Institute (KERI))
Shin, Weon Ho (Department of Electronic Materials Engineering, Kwang-woon University)
Oh, Jong-Min (Department of Electronic Materials Engineering, Kwang-woon University)
Park, Chulhwan (Department of Chemical Engineering, Kwang-woon University)
Koo, Sang-Mo (Department of Electronic Materials Engineering, Kwang-woon University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.34, no.3, 2021 , pp. 214-219 More about this Journal
Abstract
We investigated deep levels in n-type 4H-SiC epitaxy layer of the Schottky barrier diodes (SBD) and Junction Barrier Schottky (JBS) diodes by using deep level transient spectroscopy (DLTS). The I-V characteristics of the JBS devices show ~100 times lower leakage current level than SBDs owing to the grid structures in JBS. The reliable responses of the diodes for deep level transient analysis showed from C-V characteristics. Several deep electron traps were revealed by DLTS measurements in epitaxial layers in 4H-SiC. In both types of diodes, the peaks corresponding to shallow energy levels were observed with slightly different values of 0.132 eV for JBS and 0.186 eV for SBDs. The two remarkable deep level peaks (J2 and J3) have been obtained with 0.257 eV and 0.273 eV in JBS, and they were analyzed to have a similar trap concentration of ~1014 cm-3. The comparison results showed that the defects could be related with device fabrication procedures such as ion-implantation and growth.
Keywords
4H-SiC; Deep level transient spectroscopy; Junction barrier Schottky; Schottky barrier diode;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. J. Baliga, J. Appl. Phys., 53, 1759 (1982). [DOI: https://doi.org/10.1063/1.331646]   DOI
2 J. Yang, S. Ahn, F. Ren, S. J. Pearton, S. Jang, and A. Kuramata, IEEE Electron Device Lett., 38, 906 (2017). [DOI: https://doi.org/10.1109/LED.2017.2703609]   DOI
3 K. M. Geib, C. Wilson, R. G. Long, and C. W. Wilmsen, J. Appl. Phys., 68, 2796 (1990). [DOI: https://doi.org/10.1063/1.346457]   DOI
4 W. Y. Son, M. C. Shin, M. Schweitz, S. K. Lee, and S. M. Koo, J. Nanoelectron. Optoelectron., 15, 777 (2020). [DOI: https://doi.org/10.1166/jno.2020.2818]   DOI
5 C. Zhang, S. Srdic, S. Lukic, Y. Kang, E. Choi, and E. Tafti, Proc. 2018 IEEE Energy Conversion Congress and Exposition (ECCE) (IEEE, Portland, USA, 2018) p. 3880. [DOI: https://doi.org/10.1109/ECCE.2018.8558373]
6 Y. J. Lee, S. Cho, J. H. Seo, S. J. Min, J. I. An, J. M. Oh, S. M. Koo, and D. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 31, 367 (2018). [DOI: https://doi.org/10.4313/JKEM.2018.31.6.367]   DOI
7 Y. Pan, L. Tian, H. Wu, Y. Li, and F. Yang, Microelectron. Eng., 181, 10 (2017). [DOI: https://doi.org/10.1016/j.mee.2017.05.054]   DOI
8 S. Sasaki, K. Kawahara, G. Feng, G. Alfieri, and T. Kimoto, J. Appl. Phys., 109, 013705 (2011). [DOI: https://doi.org/10.1063/1.3528124]   DOI
9 S. J. Min, M. C. Shin, N. T. Nguyen, J. M. Oh, and S. M. Koo, Materials, 13, 445 (2020). [DOI: https://doi.org/10.3390/ma13020445]   DOI
10 T. Dalibor, G. Pensl, H. Matsunami, T. Kimoto, W. J. Choyke, A. Schoner, and N. Nordell, Phys. Status Solidi A, 162, 199 (1997). [DOI: https://doi.org/10.1002/1521-396X(199707)162:1<199: AID-PSSA199>3.0.CO;2-0]   DOI
11 K. Kawahara, G. Alfieri, and T. Kimoto, J. Appl. Phys., 106, 013719 (2009). [DOI: https://doi.org/10.1063/1.3159901]   DOI
12 B. Zippelius, J. Suda, and T. Kimoto, J. Appl. Phys., 111, 033515 (2012). [DOI: https://doi.org/10.1063/1.3681806]   DOI
13 Y. D. Tang, X. Y. Liu, Z. D. Zhou, Y. Bai, and C. Z. Li, Chinese Phys. B, 28, 106101 (2019). [DOI: https://doi.org/10.1088/1674-1056/ab3cc2]   DOI
14 T. Dalibor, G. Pensl, N. Nordell, and A. Schoner, Phys. Rev. B, 55, 13618 (1997). [DOI: https://doi.org/10.1103/PhysRevB.55.13618]   DOI
15 L. Gelczuk, M. Dabrowska-Szata, M. Sochacki, and J. Szmidt, Solid-State Electron., 94, 56 (2014). [DOI: https://doi.org/10.1016/j.sse.2014.02.008]   DOI
16 F. Fabbri, D. Natalini, A. Cavallini, T. Sekiguchi, R. Nipoti, and F. Moscatelli, Superlattices Microstruct., 45, 383 (2009). [DOI: https://doi.org/10.1016/j.spmi.2008.10.024]   DOI