Browse > Article
http://dx.doi.org/10.4313/JKEM.2021.34.3.178

Nanometer-Scale Etching of Copper Thin Films Using High Density Plasma of Organic Chelator Material  

Lee, Ji Soo (Department of Chemical Engineering, Inha University)
Lim, Eun Taek (Department of Chemical Engineering, Inha University)
Cha, Moon Hwan (Department of Chemical Engineering, Inha University)
Park, Sung Yong (Department of Chemical Engineering, Inha University)
Chung, Chee Won (Department of Chemical Engineering, Inha University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.34, no.3, 2021 , pp. 178-185 More about this Journal
Abstract
Inductively coupled plasma reactive ion etching (ICP-RIE) of copper thin films patterned with SiO2 hard masks was carried out using piperidine/O2/Ar gas mixture. The etch rate, etch selectivity, and etch profile of copper thin films were investigated by varying gas concentration in piperidine/O2/Ar gas mixture. In addition, the etch parameters including ICP RF power, DC-bias voltage to substrate, and process pressure were varied to examine the etch characteristics. X-ray photoelectron spectroscopy and optical emission spectroscopy were employed to elucidate the etch mechanism under piperidine/O2/Ar gas chemistry. Finally, 150 nm-line patterned copper thin films were successfully etched using piperidine/O2/Ar etch gas under the optimized etch conditions.
Keywords
Copper; Inductively coupled plasma reactive ion etching; Piperidine; Oxygen; Low temperature etching; SiO2 hard mask;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Lee and Y. Kuo, J. Electrochem. Soc., 148, G524 (2001). [DOI: https://doi.org/10.1149/1.1392324]   DOI
2 O. J. Kwon, S. K. Cho, and J. J. Kim, Korean Chem. Eng. Res., 47, 141 (2009).
3 P. A. Tamirisa, G. Levitin, N. S. Kulkarni, and D. W. Hess, Microelectron. Eng., 84, 105 (2007). [DOI: https://doi.org/10.1016/j.mee.2006.08.012]   DOI
4 S. Rakheja, S. C. Chang, and A. Naeemi, IEEE Trans. Electron Devices, 60, 3913 (2013). [DOI: https://doi.org/10.1109/TED.2013.2282615]   DOI
5 K. Ohno, M. Sato, and Y. Arita, J. Electrochem. Soc., 143, 4089 (1996). [DOI: https://doi.org/10.1149/1.1837341]   DOI
6 B. J. Howard and C. Steinbruchel, Appl. Phys. Lett., 59, 914 (1991). [DOI: https://doi.org/10.1063/1.106299]   DOI
7 S. Lee and Y. Kuo, Thin Solid Films, 457, 326 (2004). [DOI: https://doi.org/10.1016/j.tsf.2003.10.011]   DOI
8 F. Wu, G. Levitin, and D. Hess, ECS Trans., 33, 157 (2010). [DOI: https://doi.org/10.1149/1.3501042]   DOI
9 E. T. Lim, J. S. Ryu, J. S. Choi, and C. W. Chung, Vacuum, 167, 145 (2019). [DOI: https://doi.org/10.1016/j.vacuum.2019.05.046]   DOI
10 J. S. Ryu, E. T. Lim, J. S. Choi, and C. W. Chung, Thin Solid Films, 672, 55 (2019). [DOI: https://doi.org/10.1016/j.tsf.2018.12.042]   DOI
11 E. Cano, J. M. Bastidas, J. L. Polo, and N. Mora, J. Electrochem. Soc., 148, B431 (2001). [DOI: https://doi.org/10.1149/1.1404968]   DOI
12 A. Cano, Y. Avila, M. Avila, and E. Reguera, J. Solid State Chem., 276, 339 (2019). [DOI: https://doi.org/10.1016/j.jssc.2019.05.021]   DOI
13 G. C. Allen, F. Sorbello, C. Altavilla, A. Castorina, and E. Ciliberto, Thin Solid Films, 483, 306 (2005). [DOI: https://doi.org/10.1016/j.tsf.2004.12.062]   DOI
14 G. Beamson and D. Briggs, High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database (John Wiley & Sons, New York, 1992) p. 182.
15 S. S. Chang, H. J. Lee, and H. J. Park, Ceram. Int., 31, 411 (2005). [DOI: https://doi.org/10.1016/j.ceramint.2004.05.027]   DOI
16 N. Awaya and Y. Arita, J. Electron. Mater., 21, 959 (1992). [DOI: https://doi.org/10.1007/BF02684203]   DOI
17 M. T. Bohr, Solid State Technol., 39, 105 (1996).
18 B. Li, T. D. Sullivan, T. C. Lee, and D. Badami, Microelectron. Reliab., 44, 365 (2004). [DOI: https://doi.org/10.1016/j.microrel.2003.11.004]   DOI
19 A. Jain, T. T. Kodas, R. Jairath, and M. J. Hampden-Smith, J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom., 11, 2107 (1993). [DOI: https://doi.org/10.1116/1.586550]   DOI
20 S. P. Murarka and S. W. Hymes, Crit. Rev. Solid State Mater. Sci., 20, 87 (1995). [DOI: https://doi.org/10.1080/10408439508243732]   DOI
21 M. H. Cha, E. T. Lim, S. Y. Park, J. S. Lee, and C. W. Chung, Vacuum, 181, 109421 (2020). [DOI: https://doi.org/10.1016/j.vacuum.2020.109421]   DOI
22 M. Barber, J. A. Connor, M. F. Guest, I. H. Hillier, M. Schwarz, and M. Stacey, J. Chem. Soc., Faraday Trans. 2, 69, 551 (1973). [DOI: https://doi.org/10.1039/F29736900551]   DOI
23 M. C. Biesinger, Surf. Interface Anal., 49, 1325 (2017). [DOI: https://doi.org/10.1002/sia.6239]   DOI