Browse > Article
http://dx.doi.org/10.4313/JKEM.2021.34.3.167

Partial Electrode Configuration as a Tool for the Precise Determination of Losses and Physical Parameters of Piezoceramics  

Park, Yoonsang (International Center for Actuators and Transducers (ICAT), The Pennsylvania State University)
Choi, Minkyu (International Center for Actuators and Transducers (ICAT), The Pennsylvania State University)
Daneshpajooh, Hossein (International Center for Actuators and Transducers (ICAT), The Pennsylvania State University)
Scholehwar, Timo (R & D Department, PI Ceramic GmbH, Lindenstrasse)
Hennig, Eberhard (R & D Department, PI Ceramic GmbH, Lindenstrasse)
Uchino, Kenji (International Center for Actuators and Transducers (ICAT), The Pennsylvania State University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.34, no.3, 2021 , pp. 167-177 More about this Journal
Abstract
IEEE Standard on Piezoelectricity has been utilized for decades though it has shown significant issues that prevent researchers from obtaining accurate materials coefficients. To resolve these issues, our research group recently proposed partial electrode (PE) method. PE method utilizes samples that consist of the center part covered with electrode, and the side part either covered or not covered with electrode for obtaining both intensive and extensive elastic parameters. In this review, we introduce our PE method, along with physical phenomenology and background, such as issues of IEEE standard, to bolster readers understanding of needs for developing new measurement method that can compensate the standard method. It is shown that development of the PE method not only provides technological benefits, but also gives scientific importance for the piezoelectric research community from its extremely high data accuracy.
Keywords
Piezoelectric composite; Loss determination method; Piezoelectric loss; Mechanical quality factor; Heat generation; High-power piezoelectric devices;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Majzoubi, H. N. Shekhani, A. Bansal, E. Hennig, T. Scholehwar, and K. Uchino, J. Appl. Phys., 120, 225113 (2016). [DOI: https://doi.org/10.1063/1.4971340]   DOI
2 Y. Park, Y. Zhang, M. Majzoubi, T. Scholehwar, E. Hennig, and K. Uchino, Sens. Actuators, A, 312, 112124 (2020). [DOI: https://doi.org/10.1016/j.sna.2020.112124]   DOI
3 M. Nic, J. Jirat, and B. Kosata, Compendium of Chemical Terminology, International Union of Pure and Applied Chemistry (IUPAC) (2014) p. 542, p. 740.
4 V. Ostasevicius, I. Milasauskaite, R. Dauksevicius, V. Baltrusaitis, V. Grigaliunas, and I. Prosycevas, Mechanics, 86, 78 (2010).
5 T. Ikeda, Fundamentals of Piezoelectricity (Oxford University Press, New York, 1990) pp. 54-82.
6 K. Uchino, Advanced Piezoelectric Materials, Elsevier (Woodhead Publishing, Cambridge, UK, 2017) p. 647. [DOI: https://doi. org/10.1016/b978-0-08-102135-4.00017-5]
7 D. J. Griffiths, Introduction to Electrodynamics, 4th ed. (Cambridge University Press, Cambridge, UK, 2017) pp. 167-202. [DOI: https://doi.org/10.1017/9781108333511]
8 G. M. Sessler and A. Berraissoul, IEEE Trans. Electr. Insul., 24, 249 (1989). [DOI: https://doi.org/10.1109/14.90283]   DOI
9 Y. Zhuang, S. O. Ural, S. Tuncdemir, A. Amin, and K. Uchino, Jpn. J. Appl. Phys., 49, 021503 (2010). [DOI: https://doi.org/10.1143/jjap.49.021503]   DOI
10 H. Daneshpajooh, H. N. Shekhani, M. Choi, and K. Uchino, J. Am. Ceram. Soc., 101, 1940 (2018). [DOI: https://doi.org/10.1111/jace.15338]   DOI
11 K. Uchino, Y. Zhuang, and S. O. Ural, J. Adv. Dielectr., 1, 17 (2011). [DOI: https://doi.org/10.1142/s2010135x11000033]   DOI
12 A. Meitzler, H. Tiersten, A. Warner, D. Berlincourt, G. Couqin, and F. Welsh III, IEEE Standard on Piezoelectricity (IEEE Ultrasound, Ferroelectrics and Frequency Control Society, New York, USA, 1988) pp. 29-63.
13 A. V. Mezheritsky, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 49, 484 (2002). [DOI: https://doi.org/10.1109/58.996567]   DOI
14 A. Iula, F. Vazquez, M. Pappalardo, and J. A. Gallego, Ultrasonics, 40, 513 (2002). [DOI: https://doi.org/10.1016/s0041-624x(02)00174-9]   DOI
15 A. Abdullah, M. Shahini, and A. Pak, J. Electroceram., 22, 369 (2009). [DOI: https://doi.org/10.1007/s10832-007-9408-8]   DOI
16 X. Dong, T. Yuan, M. Hu, H. Shekhani, Y. Maida, T. Tou, and K. Uchino, Rev. Sci. Instrum., 87, 105003 (2016). [DOI: https://doi.org/10.1063/1.4963920]   DOI
17 S. Hirose, M. Aoyagi, and Y. Tomikawa, Jpn. J. Appl. Phys., 32, 2418 (1993). [DOI: https://doi.org/10.1143/jjap.32.2418]   DOI
18 Y. Zhang, R. Zheng, K. Shimono, T. Kaizuka, and K. Nakano, Sensors, 16, 1727 (2016). [DOI: https://doi.org/10.3390/s16101727]   DOI
19 O. D. Kwon, J. S. Yoo, Y. J. Yun, J. S. Lee, S. H. Kang, and K. J. Lim, Proc. 2005 International Symposium on Electrical Insulating Materials, 2005. (ISEIM 2005) (IEEE, Kitakyushu, Japan, 2005) p. 676. [DOI: https://doi.org/10.1109/iseim.2005.193460]   DOI
20 H. P. Ko, H. Jeong, and B. Koc, J. Electroceram., 23, 530 (2009). [DOI: https://doi.org/10.1007/s10832-008-9529-8]   DOI
21 S.T.A. Hamdani and A. Fernando, Sensors, 15, 7742 (2015). [DOI: https://doi.org/10.3390/s150407742]   DOI
22 C. Sugino and A. Erturk, J. Phys. D: Appl. Phys., 51, 215103 (2018). [DOI: https://doi.org/10.1088/1361-6463/aab97e]   DOI
23 S. Priya, H. C. Song, Y. Zhou, R. Varghese, A. Chopra, S. G. Kim, I. Kanno, L. Wu, D. S. Ha, J. Ryu, and R. G. Polcawich, Energy Harvesting Syst., 4, 3 (2019). [DOI: https://doi.org/10.1515/ehs-2016-0028]   DOI
24 H. S. Kim, J. H. Kim, and J. Kim, Int. J. Precis. Eng. Manuf., 12, 1129 (2011). [DOI: https://doi.org/10.1007/s12541-011-0151-3]   DOI
25 G. L. Smith, R. Q. Rudy, R. G. Polcawich, and D. L. DeVoe, Sens. Actuators, A, 188, 305 (2012). [DOI: https://doi.org/10.1016/j.sna.2011.12.029]   DOI
26 M. Choi, Y. Park, H. Daneshpajooh, T. Scholehwar, E. Hennig, and K. Uchino, Ceram. Int., (In press, 2021). [DOI: https://doi.org/10.1016/j.ceramint.2021.02.210]   DOI
27 H. Cao, V. H. Schmidt, R. Zhang, W. Cao, and H. Luo, J. Appl. Phys., 96, 549 (2004). [DOI: https://doi.org/10.1063/1.1712020]   DOI
28 C. A. Rosen, Ph.D. Dissertation, Analysis and Design of Ceramic Transformers and Filter Elements, Syracuse University, New York (1956).
29 E. M. Syed, F. P. Dawson, and E. S. Rogers, Proc. 2001 IEEE 32nd Annual Power Electronics Specialists Conference (IEEE Cat. No. 01CH37230) (IEEE, Vancouver, Canada, 2001) p. 1761. [DOI: https://doi.org/10.1109/pesc.2001.954377]   DOI
30 H. Xue, J. Yang, and Y. Hu, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 55, 1632 (2008). [DOI: https://doi.org/10.1109/tuffc.2008.837]   DOI
31 A. Ando, T. Kittaka, Y. Sakabe, and S. Fujishima, EnergyTrapping-Type Piezoelectric Resonance Device, Google Patents, 1990.
32 Y. Qiu, J. V. Gigliotti, M. Wallace, F. Griggio, C.E.M. Demore, S. Cochran, S. Trolier-McKinstry, Sensors, 15, 8020 (2015). [DOI: https://doi.org/10.3390/s150408020]   DOI
33 S. W. Bartky, A. D. Paton, S. Temple, and J. A. Michaelis, Pulsed Droplet Deposition Apparatus Using Unpoled Crystalline Shear Mode Actuator, Google Patents, 1991.
34 P. Laoratanakul, A. V. Carazo, P. Bouchilloux, and K. Uchino, Jpn. J. Appl. Phys., 41, 1446 (2002). [DOI: https://doi.org/10.1143/jjap.41.1446]   DOI
35 R. Zhang, B. Jiang, and W. Cao, Appl. Phys. Lett., 82, 787 (2003). [DOI: https://doi.org/10.1063/1.1541937]   DOI
36 Y. Park, H. Daneshpajooh, T. Scholehwar, E. Hennig, and K. Uchino, Physical Parameter and Loss Determination Using Partial Electrode: k31 and k33 Mode Cases, ArXiv e-Print (2020).
37 Y. Shindo, F. Narita, and M. Hirama, Smart Mater. Struct., 18, 085020 (2009). [DOI: https://doi.org/10.1088/0964-1726/18/8/085020]   DOI
38 J. Zheng, S. Takahashi, S. Yoshikawa, K. Uchino, and J.W.C. de Vries, J. Am. Ceram. Soc., 79, 3193 (1996). [DOI: https://doi.org/10.1111/j.1151-2916.1996.tb08095.x]   DOI
39 D. S. Paik, K. H. Yoo, C. Y. Kang, B. H. Cho, S. Nam, and S. J. Yoon, J. Electroceram., 22, 346 (2009). [DOI: https://doi.org/10.1007/s10832-008-9513-3]   DOI
40 Battery Market, Growth, Trends, COVID-19 Impact, and Forecasts (2021 - 2026) https://www.mordorintelligence.com/industry-reports/global-battery-market-industry (2019, Accessed March 29th 2021).
41 Y. H. Su, Y. P. Liu, D. Vasic, W. J. Wu, F. Costa, and C. K. Lee, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 59, 2129 (2012). [DOI: https://doi.org/10.1109/tuffc.2012.2439]   DOI
42 S. O. Ural, S. Tuncdemir, Y. Zhuang, and K. Uchino, Jpn. J. Appl. Phys., 48, 056509 (2009). [DOI: https://doi.org/10.1143/jjap.48.056509]   DOI
43 S. Dong, S. P. Lim, K. H. Lee, J. Zhang, L. C. Lim, and K. Uchino, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 50, 361 (2003). [DOI: https://doi.org/10.1109/tuffc.2003.1197958]   DOI
44 Y. Park, M. Majzoubi, Y. Zhang, T. Scholehwar, E. Hennig, and K. Uchino, J. Appl. Phys., 127, 204102 (2020). [DOI: https://doi.org/10.1063/1.5143728]   DOI
45 E. Heinonen, J. Juuti, and S. Leppavuori, J. Eur. Ceram. Soc., 25, 2467 (2005). [DOI: https://doi.org/10.1016/j.jeurceramsoc.2005.03.083]   DOI
46 Y. Park, H. Daneshpajooh, T. Scholehwar, E. Hennig, and K. Uchino, Appl. Mater. Today, 23, 101020 (2021). [DOI: https://doi.org/10.1016/j.apmt.2021.101020]   DOI
47 Y. Zhuang, S. O. Ural, and K. Uchino, Ferroelectrics, 470, 260 (2014). [DOI: https://doi.org/10.1080/00150193.2014.923727]   DOI