Browse > Article
http://dx.doi.org/10.4313/JKEM.2020.33.1.16

Fabrication of Multi-Fin-Gate GaN HEMTs Using Honeycomb Shaped Nano-Channel  

Kim, Jeong Jin (Electronics and Telecommunications Research Institute)
Lim, Jong Won (Electronics and Telecommunications Research Institute)
Kang, Dong Min (Electronics and Telecommunications Research Institute)
Bae, Sung Bum (Electronics and Telecommunications Research Institute)
Cha, Ho Young (Metamaterial Electronic Device Research Center, Hongik University)
Yang, Jeon Wook (School of Semiconductor and Chemical Engineering, Chonbuk National University)
Lee, Hyeong Seok (Electronics and Telecommunications Research Institute)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.33, no.1, 2020 , pp. 16-20 More about this Journal
Abstract
In this study, a patterning method using self-aligned nanostructures was introduced to fabricate GaN-based fin-gate HEMTs with normally-off operation, as opposed to high-cost, low-productivity e-beam lithography. The honeycomb-shaped fin-gate channel width is approximately 40~50 nm, which is manufactured with a fine width using a proposed method to obtain sufficient fringing field effect. As a result, the threshold voltage of the fabricated device is 0.6 V, and the maximum normalized drain current and transconductance of Gm are 136.4 mA/mm and 99.4 mS/mm, respectively. The fabricated devices exhibit a smaller sub-threshold swing and higher Gm peak compared to conventional planar devices, due to the fin structure of the honeycomb channel.
Keywords
GaN; HEMTs; Fin FET; Fin-gate; Normally-off; High resolution patterning;
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. Lee, L. Y. Su, C. H. Wang, Y. R. Wu, and J. Huang, IEEE Electron Device Lett., 36, 232 (2015). [DOI: https://doi.org/10.1109/led.2015.2395454]   DOI
2 K. S. Kim, Jpn. J. Appl. Phys., 56, 091002 (2017). [DOI:https://doi.org/10.7567/jjap.56.091002]   DOI
3 D. Song, J. Liu, Z. Cheng, W.C.W. Tang, K.M. Lau, and K. J. Chen, IEEE Electron Device Lett., 28, 189 (2007). [DOI: https://doi.org/10.1109/led.2007.891281]   DOI
4 P. Fiorenza, G. Greco, E. Schiliro, F. Iucolano, R. L. Nigro, and F. Roccaforte, Jpn. J. Appl. Phys., 57, 050307 (2018). [DOI: https://doi.org/10.7567/jjap.57.050307]   DOI
5 S. Nakazawa, N. Shiozaki, N. Negoro, N. Tsurumi, Y. Anda, M. Ishida, and T. Ueda, Jpn. J. Appl. Phys., 56, 091003 (2017). [DOI: https://doi.org/10.7567/jjap.56.091003]   DOI
6 Y. W. Jo, D. H. Son, C. H. Won, K. S. Im, J. H. Seo, I. M. Kang, and J. H. Lee, IEEE Electron Device Lett., 36, 1008 (2015). [DOI: https://doi.org/10.1109/led.2015.2466096]   DOI
7 K. S. Im, H. S. Kang, J. H. Lee, S. J. Chang, S. Cristoloveanu, M. Bawedin, and J. H. Lee, Solid-State Electron., 97, 66 (2014). [DOI: https://doi.org/10.1016/j.sse.2014.04.033]   DOI
8 G. Hu, H. Qiang, S. Hu, R. Liu, L. Zheng, and X. Zhou, Jpn. J. Appl. Phys., 56, 021002 (2017). [DOI: https://doi.org/10.7567/jjap.56.021002]   DOI
9 J. H. Lim, J. J. Kim, K. H. Shim, and J. W. Yang, J. Korean Inst. Electr. Electron. Mater. Eng., 17, 71 (2013). [DOI: https://doi.org/10.7471/ikeee.2013.17.1.071]
10 G. S. Kim, D. J. Kim, J. H. Hyung, M. K. Lee, and S. K. Lee, Anal. Chem., 86, 5330 (2014). [DOI: https://doi.org/10.1021/ac5001916]   DOI