Browse > Article
http://dx.doi.org/10.4313/JKEM.2019.32.5.393

Quantum Dot Light-Emitting Diodes with Poly-TPD/PVK Bilayer Hole Transport Layer  

Kim, Hyun Soo (Department of Electronics and Information Engineering, Soonchunhyang University)
Lee, Do Hyung (Department of Electronics and Information Engineering, Soonchunhyang University)
Kim, Bada (Department of Electronics and Information Engineering, Soonchunhyang University)
Hwang, Bo Ram (Department of Electronics and Information Engineering, Soonchunhyang University)
Kim, Chang Kyo (Department of Electronics and Information Engineering, Soonchunhyang University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.32, no.5, 2019 , pp. 393-398 More about this Journal
Abstract
A poly[bis(4-butypheny)-bis(phenyl)benzidine] (poly-TPD) and poly(9-vinylcarbazole) (PVK) bilayer was employed as a hole transport layer (HTL) in solution-processed CdSe/ZnS quantum dot light-emitting diodes (QLEDs). The thickness of the PVK layer spin-coated onto the poly-TPD layer, whose thickness was fixed to 40 nm, was varied, with PVK layer thicknesses of 0 nm, 35 nm, 45 nm, and 55 nm. Because the thickness of the PVK can determine the hole transport properties of the HTL, a PVK thickness that maximizes the performance of the HTL for the QLEDs was investigated. By employing the optimized PVK thickness of 45 nm, the current efficiency of the QLED exhibited a 1.74 times improvement when compared with that of the QLED with poly-TPD based HTL without PVK. This was mainly attributed to the decrease in the energy barrier between the HTL and the quantum dot (QD) emitting layer (EML).
Keywords
Quantum dot; Quantum dot light-emitting diodes; Hole transport layer; Poly-TPD; PVK;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Bulovic, Nano Lett., 9, 2532 (2009). [DOI: https://doi.org/10.1021/nl9002969]   DOI
2 X. Yang, D. Zhao, K. S. Leck, S. T. Tan, Y. X. Tang, J. Zhao, H. V. Demir, and X. W. Sun, Adv. Mater., 24, 4180 (2012). [DOI: https://doi.org/10.1002/adma.201104990]   DOI
3 W. K. Bae, J. Kwak, J. Lim, D. Lee, M. K. Nam, K. Char, C. Lee, and S. Lee, Nano Lett., 10, 2368 (2010). [DOI: https://doi.org/10.1021/nl100168s]   DOI
4 L. Qian, Y. Zheng, J. Xue, and P. H. Holloway, Nat. Photonics, 5, 543 (2011). [DOI: https://doi.org/10.1038/nphoton.2011.171]   DOI
5 Z. Zhong, J. Zou, C. Jiang, L. Lan, C. Song, Z. He, L. Mu, L. Wang, J. Wang, J. Peng, and Y. Cao, Org. Electron., 58, 245 (2018). [DOI: https://doi.org/10.1016/j.orgel.2018.04.014]   DOI
6 J. S. Steckel, P. Snee, S. Coe-Sullivan, J. P. Zimmer, J. E. Halpert, P. Anikeeva, L. A. Kim, V. Bulovic, and M. G. Bawendi, Angew. Chem., 45, 5796 (2006). [DOI: https://doi.org/10.1002/anie.200600317]   DOI
7 V. Wood and V. Bulovic, Nano Rev., 1, 5202 (2010). [DOI:https://doi.org/10.3402/nano.v1i0.5202]   DOI
8 Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulovic, Nat. Photonics, 7, 13 (2012). [DOI: https://doi.org/10.1038/nphoton.2012.328]   DOI
9 V. Wood, M. J. Panzer, J. E. Halpert, J. M. Caruge, M. G. Bawendi, and V. Bulovic, ACS Nano, 3, 3581 (2009). [DOI:https://doi.org/10.1021/nn901074r]   DOI
10 J. M. Caruge, J. E. Halpert, V. Bulovic, and M. G. Bawendi, Nano Lett., 6, 2991 (2006). [DOI: https://doi.org/10.1021/nl0623208]   DOI
11 R. Vasan, H. Salman, and O. Manasreh, IEEE Electron Device Lett., 39, 536 (2018). [DOI: https://doi.org/10.1109/LED.2018.2808679]   DOI
12 Y. Yang, Y. Zheng, W. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. Xue, P. H. Holloway, and L. Qian, Nat. Photonics, 9, 259 (2015). [DOI: https://doi.org/10.1038/nphoton.2015.36]   DOI
13 C. Jiang, H. Liu, B. Liu, Z. Zhong, J. Zou, J. Wang, L. Wang, J. Peng, and Y. Cao, Org. Electron., 31, 82 (2016). [DOI:https://doi.org/10.1016/j.orgel.2016.01.009]   DOI
14 H. Zhang, H. Li, X. Sun, and S. Chen, ACS Appl. Mater. Interfaces, 8, 5493 (2016). [DOI: https://doi.org/10.1021/acsami.5b12737]   DOI
15 X. Zhang, H. Dai, J. Zhao, S. Wang, and X. Sun, Thin Solid Films, 603, 187 (2016). [DOI: https://doi.org/10.1016/j.tsf.2016.02.017]   DOI
16 J. M. Caruge, J. E. Halpert, V. Wood, V. Bulovic, and M. G. Bawendi, Nat. Photonics, 2, 247 (2008). [DOI: https://doi.org/10.1038/nphoton.2008.34]   DOI
17 A. Castan, H. M. Kim, and J. Jiang, ACS Appl. Mater. Interfaces, 6, 2508 (2014). [DOI: https://doi.org/10.1021/am404876p]   DOI
18 J. H. Yu, S. B. Heo, M. Kim, Y. Yi, and S. J. Kang, Thin Solid Films, 687, 137444 (2019). [DOI: https://doi.org/10.1016/j.tsf.2019.137444]   DOI
19 X. L Zhang, H. T. Dai, J. L. Zhao, C. Li, S. G. Wang, and X. W. Sun, Thin Solid Films, 567, 72 (2014). [DOI: https://doi.org/10.1016/j.tsf.2014.07.030]   DOI
20 A. Balati, A. Bazilio, A. Shahriar, K. Nash, and H. J. Shipley, Mater. Sci. Semicond. Process., 99, 68 (2019). [DOI:https://doi.org/10.1016/j.mssp.2019.04.017]   DOI
21 G. R. Yi, H. S. Kim, K. W. Jeong, and C. K. Kim, Mol. Cryst. Liq. Cryst., 651, 99 (2017). [DOI: https://doi.org/10.1080/09273948.2017.1338904]   DOI
22 G. Klarner, J. I. Lee, V. Y. Lee, E. Chan, J. P. Chen, A. Nelson, D. Markiewicz, R. Siemens, J. C. Scott, and R. D. Miller, Chem. Mater., 11, 1800 (1999). [DOI: https://doi.org/10.1021/cm990027l]   DOI
23 K. W. Jeong, H. S. Kim, G. R. Yi, and C. K. Kim, Mol. Cryst. Liq. Cryst., 663, 61 (2018). [DOI: https://doi.org/10.1080/15421406.2018.1468099]   DOI
24 M. C. Schlamp, X. Peng, and A. P. Alivisatos, J. Appl. Phys., 82, 5837 (1997). [DOI: https://doi.org/10.1063/1.366452]   DOI