Browse > Article
http://dx.doi.org/10.4313/JKEM.2019.32.1.47

Chip Size-Dependent Light Extraction Efficiency for Blue Micro-LEDs  

Park, Hyun Jung (Department of Printed Electronics Engineering, Sunchon National University)
Cha, Yu-Jung (Department of Printed Electronics Engineering, Sunchon National University)
Kwak, Joon Seop (Department of Printed Electronics Engineering, Sunchon National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.32, no.1, 2019 , pp. 47-52 More about this Journal
Abstract
Micro-LEDs show lower efficiencies compared to general LEDs having large areas. Simulations were carried out using ray-tracing software to investigate the change in light extraction efficiency and light distribution according to chip-size of blue flip-chip micro-LEDs (FC ${\mu}-LEDs$). After fixing the height of the square FC ${\mu}-LED$ chip at $158{\mu}m$, the length of one side was varied, with dimensions of 2, 5, 10, 30, 50, 100, 300, and $500{\mu}m$. The highest light-extraction efficiency was obtained at $10{\mu}m$, beyond which the efficiency decreased as the chip-size increased. The chip size-dependence of the FC ${\mu}-LEDs$ both without the patterned sapphire substrate, as well as vertical FC ${\mu}-LEDs$, were analyzed.
Keywords
Micro LED (light emitting diode); Light extraction efficiency; Chip size; Ray tracing simulation;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 S. J. Park, LED Light extraction technology, http://webzine. kps.or.kr/contents/data/webzine/webzine/14762094724.pdf (2008).
2 H. J. Park, D. K. Lee, and J. S. Kwak, J. Korean Inst. Electr. Electron. Mater. Eng., 28, 676 (2015). [DOI: https://doi.org/10.4313/JKEM.2015.28.10.676]   DOI
3 S. S. Kim, J. W. Lee, and B. J. Jeon, J. Korean Inst. Electr. Electron. Mater. Eng., 30, 800 (2017). [DOI: https://doi.org/10.4313/JKEM.2017.30.12.800]   DOI
4 S. J. Hwang and J. S. Kwak, J. Korean Inst. Electr. Electron. Mater. Eng., 30, 175 (2017). [DOI: https://doi.org/10.4313/JKEM.2017.30.3.175]   DOI
5 M. S. Jang, W. H. Kim, Y. R, Kang, K. H. Kim, S. B. Song, J. H. Kim, and J. P. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 25, 849 (2012). [DOI: https://doi.org/10.4313/JKEM.2012.25.10.849]   DOI
6 K. S. Shin, D. Y. Kim, and T. G. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 24, 911 (2011). [DOI: https://doi.org/10.4313/JKEM.2011.24.11.911]   DOI
7 J. Piprek, Phys. Status Solidi A, 207, 2217 (2010). [DOI: https://doi.org/10.1002/pssa.201026149]   DOI
8 Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, Appl. Phys. Lett., 91, 141101 (2007). [DOI: https://doi.org/10.1063/1.2785135]   DOI
9 M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, Appl. Phys. Lett., 91, 183507 (2007). [DOI: https://doi.org/10.1063/1.2800290]   DOI
10 X. Ni, Q. Fan, R. Shimada, U. Ozgur, and H. Morkoc, Appl. Phys. Lett., 93, 171113 (2008). [DOI: https://doi.org/10.1063/1.3012388]   DOI
11 Y. Yang, X. A. Cao, and C. Yan, IEEE Trans. Electron Devices, 55, 1771 (2008). [DOI: https://doi.org/10.1109/TED.2008.923561]   DOI
12 J. Hader, J. V. Moloney, and S. W. Koch, Appl. Phys. Lett., 96, 221106 (2010). [DOI: https://doi.org/10.1063/1.3446889]   DOI
13 Y. Y. Kudryk and A. V. Zinovchuk, Semicond. Sci. Technol., 26, 095007 (2011). [DOI: https://doi.org/10.1088/0268-1242/26/9/095007]   DOI
14 Z. Gong, S. Jin, Y. Chen, J. McKendry, D. Massoubre, I. M. Watson, E. Gu, and M. D. Dawson, J. Appl. Phys., 107, 013103 (2010). [DOI: https://doi.org/10.1063/1.3276156]   DOI
15 P. Tian, J.J.D. McKendry, Z. Gong, B. Guilhabert, I. M. Watson, E. Gu, Z. Chen, G. Zhang, and M. D. Dawson, Appl. Phys. Lett., 101, 231110 (2012). [DOI: https://doi.org/10.1063/1.4769835]   DOI
16 T. K. Kim, M. U. Cho, J. M. Lee, Y. J. Cha, S. K. Oh, B. Chatterjee, J. H. Ryou, S. Choi, and J. S. Kwak, Phys. Status Solidi A, 215, 1700571 (2018). [DOI: https://doi.org/10.1002/pssa.201700571]   DOI
17 T. Jeong, Inf. Disp., 17, 18 (2016).