Browse > Article
http://dx.doi.org/10.4313/JKEM.2018.31.4.212

Microwave Dielectric Properties of Y2O3 and TiO2-Doped Ba(Mg0.5W0.5)O3 Ceramics  

Hong, Chang-Bae (Department of Materials Engineering, Gangneung-Wonju National University)
Kim, Shin (Department of Advanced Ceramic Materials Engineering, Gangneung-Wonju National University)
Kwon, Sun-Ho (Department of Advanced Ceramic Materials Engineering, Gangneung-Wonju National University)
Yoon, Sang-Ok (Department of Advanced Ceramic Materials Engineering, Gangneung-Wonju National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.31, no.4, 2018 , pp. 212-215 More about this Journal
Abstract
The phase evolution, microstructure, and microwave dielectric properties of $Ba(Mg_{0.5-2x}Y_{2x}W_{0.5-x}Ti_x)O_3$ (x = 0.005~0.05) ceramics sintered at $1,700^{\circ}C$ for 1h were investigated. All compositions exhibited a 1:1 ordered cubic perovskite structure. The field emission scanning electron microscopy image revealed a dense microstructure in all the compositions. As the value of x increased, the lattice parameter, dielectric constant, and quality factor increased. The temperature coefficient of resonant frequency changed from $-19.6ppm/^{\circ}C$ to $-5.9ppm/^{\circ}C$ with increasing x value. The dielectric constant, quality factor, and temperature coefficient of resonant frequency of $Ba(Mg_{0.40}Y_{0.10}W_{0.45}Ti_{0.05})O_3$ were 21.7, 132,685 GHz, and $-5.9ppm/^{\circ}C$, respectively.
Keywords
$Ba(Mg_{0.5}W_{0.5})O_3$; Ordered perovskite; Dielectric constant; Quality factor; Temperature coefficient of resonant frequency;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Ohsato, J. Ceram. Soc. Jpn., 113, 703 (2005). [DOI: http://doi.org/10.2109/jcersj.113.703]   DOI
2 I. M. Reaney and D. Iddles, J. Am. Ceram. Soc., 89, 2063 (2006). [DOI: http://doi.org/10.1111/j.1551-2916.2006.01025.x]
3 H. Takahashi, K. Ayusawa, and N. Sakamoto, Jpn. J. Appl. Phys., 36, 5597 (1997). [DOI: https://doi.org/10.1143/JJAP.36.5597]   DOI
4 D. D. Khalyavin, J. Han, A.M.R. Senos, and P. Q. Mantas, J. Mater. Res., 18, 2600 (2003). [DOI: https://doi.org/10.1557/JMR.2003.0364]   DOI
5 J. J. Bian, K. Yan, and Y. F. Dong, Mater. Sci. Eng., B, 147, 27 (2008). [DOI: https://doi.org/10.1016/j.mseb.2007.11.007]   DOI
6 J. J. Bian, Y. F. Dong, and G. X. Song, J. Electroceram., 22, 390 (2009). [DOI: https://doi.org/10.1007/s10832-008-9425-2]   DOI
7 J. Y. Wu and J. J. Bian, Ceram. Int., 38, 3217 (2012). [DOI: https://doi.org/10.1016/j.ceramint.2011.12.027]   DOI
8 J. Y. Wu and J. J. Bian, Ceram. Int., 39, 3641 (2013). [DOI: https://doi.org/10.1016/j.ceramint.2012.10.193]   DOI
9 J. Y. Wu and J. J. Bian, J. Am. Ceram. Soc., 97, 880 (2014). [DOI: https://doi.org/10.1111/jace.12726]   DOI
10 J. Bian, J. Wu, R. Ubic, C. Karthik, and Y. Wu, J. Eur. Ceram. Soc., 35, 1431 (2015). [DOI: https://doi.org/10.1016/j.jeurceramsoc.2014.11.015]   DOI
11 Y. J. Lin, S. F Wang, S. H. Chen, Y. L. Liao, and C. L. Tsai, Ceram. Int., 41, 8931 (2015). [DOI: https://doi.org/10.1016/j.ceramint.2015.03.166]   DOI
12 J. J. Bian and J. Y. Wu, Ceram. Int., 42, 3290 (2016). [DOI: https://doi.org/10.1016/j.ceramint.2015.10.120]   DOI
13 S. Kim, C. B. Hong, S. H. Kwon, and S. O. Yoon, J. Ceram. Process. Res., 18, 421 (2017).
14 R. D. Shannon, Acta Cryst., A32, 751 (1976). [DOI: http://doi.org/10.1107/S0567739476001551]
15 D. E. Bugaris, J. P. Hodges, A. Huq, and H. C. Loye, J. Solid State Chem., 184, 2293 (2011). [DOI: http://doi.org/10.1016/j.jssc.2011.06.015]   DOI
16 R. D. Shannon, J. Appl. Phys., 73, 348 (1993). [DOI: https://doi.org/10.1063/1.353856]   DOI
17 V. J. Fratello and C. D. Brandle, J. Mater. Res., 9, 2554 (1994). [DOI: https://doi.org/10.1557/JMR.1994.2554]   DOI
18 R. Muhammad, Y. Iqbal, C. R. Rambo, and H. Khan, Int. J. Mater. Res., 105, 431 (2014). [DOI: https://doi.org/10.3139/146.111044]   DOI