Browse > Article
http://dx.doi.org/10.4313/JKEM.2018.31.2.85

Si Based Photoelectric Device with ITO/AZO Double Layer  

Jang, Hee-Joon (Department of Electrical Engineering, Incheon National University)
Yoon, Han-Joon (Department of Electrical Engineering, Incheon National University)
Lee, Gyeong-Nam (Department of Electrical Engineering, Incheon National University)
Kim, Joondong (Department of Electrical Engineering, Incheon National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.31, no.2, 2018 , pp. 85-89 More about this Journal
Abstract
In this study, functional transparent conducting layers were investigated for Si-based photoelectric applications. Double transparent conductive oxide (TCO) films were deposited on a Si substrate in the sequence of indium tin oxide (ITO) followed by aluminum-doped zinc oxide (AZO). First, we observed that the conductivity and transparency of AZO dominate the overall performance of the double TCO layers. Secondly, the double layered TCO film (consisting of AZO/ITO) deposited by sputtering was compared to a AZO-only film in terms of their optical and electrical properties. We prepared three different AZO films: ITO:3min/AZO:10min, ITO:5min/AZO:7min, and ITO:7min/AZO:4min. The results show that the optical properties (transmittance, absorbance, and reflection) can be controlled by the film composition. This may provide a significant pathway for the manipulation of the optical and electrical properties of photoelectric devices.
Keywords
ITO; AZO; Transparent conductive oxide (TCO); Si; Photoelectric devices;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Y. J. Jo, J. K. Kim, S. C. Han, J. S. Kwak, and J. M. Lee, Korean J. Met. Mater., 47, 44 (2009).
2 M. H Chung, S. Kim, D. Yoo, and J. H. Kim, Appl. Chem. Eng., 25, 242 (2014). [DOI: https://doi.org/10.14478/ace.2014.1013]   DOI
3 H. C. Chae and J. W. Hong, J. Korean Inst. Electr. Electron. Mater. Eng., 20, 367 (2007). [DOI: https://doi.org/10.4313/JKEM.2007.20.4.367]
4 T. H. Lin, M. S. Lin, and C. S. Yoo, Proc. 1991 Proceedings Eighth International IEEE VLSI Multilevel Interconnection Conference (IEEE, Santa Clara, USA, 1991) p. 417. [DOI: https://doi.org/10.1109/vmic.1991.153043]
5 A. E. Yarimbiyik, D. I. Oksuz, and E. Cesur, Proc. 2016 11th International Conference on Advanced Semiconductor Devices & Microsystems (ASDAM) (IEEE, Smolenice, Slovakia, 2016). p. 211. [DOI: https://doi.org/10.1109/asdam.2016.7805932]
6 Y. H. Song, T. Y. Eom, S. B. Heo, and D. Kim, J. Kor. Soc. Heat Treat., 30, 151 (2017). [DOI: https://doi.org/10.12656/jksht.2017.30.4.151]
7 T. Oh, J. Korean Vac. Soc., 21, 212 (2012). [DOI: https://doi.org/10.5757/JKVS.2012.21.4.212]   DOI
8 P. P. Manik, R. K. Mishra, U. Ganguly, and S. Lodha, Proc. 72nd Device Research Conference (IEEE, Santa Barbara, USA, 2014). p. 117. [DOI: https://doi.org/10.1109/drc.2014.6872325]
9 K. Znajdek, M. Sibinski, M. Jakubowska, M. Sloma, M. Gorski, and K. Tadaszak, Proc. 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) (IEEE, Tampa, USA, 2013). p. 2501.
10 A. V. Makhin, I. K. Meshkovskiy, and S. A. Plyastsov, IEEE Sens. J., 17, 5880 (2017). [DOI: https://doi.org/10.1109/JSEN.2017.2734278]   DOI
11 D. Lai, Y. H. Tan, and C. S. Tan, Proc. 2011 37th IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, Seattle, USA, 2011). p. 003022.
12 J. Nam and S. Jo, J. Korean Inst. Electr. Electron. Mater. Eng., 30, 401 (2017). [DOI: https://doi.org/10.4313/JKEM.2017.30.6.401]
13 S. Y. Lee and G. E. Jang, J. Korean Inst. Electr. Electron. Mater. Eng., 28, 7 (2015). [DOI: https://doi.org/10.4313/JKEM.2015.28.1.7]