Browse > Article
http://dx.doi.org/10.4313/JKEM.2017.30.8.474

Annealing Effect on TiOx Based Thin-Film Transistors with Atomic Layer Deposition  

Kim, Han-Sang (College of Electrical and Computer Engineering, Chungbuk National University)
Kim, Sung-Jin (College of Electrical and Computer Engineering, Chungbuk National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.30, no.8, 2017 , pp. 474-478 More about this Journal
Abstract
We report on thin-film transistors based on $TiO_x$ pre-annealed by femtosecond laser pulses. A 30-nm thick $TiO_x$ active channel layer was initially deposited by an ALD system. The $TiO_x$ semiconducting films were annealed by irradiation with a femtosecond laser (power: $3W/cm^2$) for 5, 25, and 50s. Atomic force microscopy images revealed that the surface of a $TiO_x$ film without femtosecond laser pre-annealing was relatively rough, while after annealing with femtosecond laser pulses, the surface of the $TiO_x$ films became smooth. With increasing radiation time, the surrounding gas atmosphere could have a larger impact on the $TiO_x$ surface; meanwhile, the thin-film roughness decreased. Thin-film transistors with $TiO_x$ active channels pre-annealed at 50s exhibited good transfer characteristics and an on-to-off current ratio of ${\sim}10^3$.
Keywords
$TiO_x$; Thin-film transistor; Atomic layer deposition; Annealing;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, Science, 300, 1269 (2003). [DOI: https://doi.org/10.1126/science.1083212]   DOI
2 K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature, 432, 488 (2004). [DOI: https://doi.org/10.1038/nature03090]   DOI
3 C. G. Van de Walle, Phys. Rev. Lett., 85, 1012 (2000). [DOI: https://doi.org/10.1103/PhysRevLett.85.1012]   DOI
4 P. H. Wobkenberg, T. Ishwara, J. Nelson, D.D.C. Bradley, S. A. Haque, and T. D. Anthopoulos, Appl. Phys. Lett., 96, 082116 (2010). [DOI: https://doi.org/10.1063/1.3330944]   DOI
5 S. K. Kim, W. D. Kim, K. M. Kim, C. S. Hwang, and J. Jeong, Appl. Phys. Lett., 85, 4112 (2004). [DOI: https://doi.org/10.1063/1.1812832]   DOI
6 B. J. Choi, D. S. Jeong, S. K. Kim, C. Rohde, S. Choi, J. H. Oh, H. J. Kim, C. S. Hwang, K. Szot, R. Waser, B. Reichenberg, and S. Tiedke, J. Appl. Phys., 98, 033715 (2005). [DOI: https://doi.org/10.1063/1.2001146]   DOI
7 A. Hayakawa, O. Yoshikawa, T. Fujieda, K. Uehara, and S. Yoshikawa, Appl. Phys. Lett., 90, 163517 (2007). [DOI: https://doi.org/10.1063/1.2730746]   DOI
8 C. J. Liu and J. S. Chen, Appl. Phys. Lett., 80, 2678 (2002). [DOI: https://doi.org/10.1063/1.1468913]   DOI
9 J. W. Park and S. Yoo, IEEE Electron Device Lett., 29, 724 (2008). [DOI: https://doi.org/10.1109/LED.2008.2000608]   DOI
10 M. Katayama, S. Ikesaka, J. Kuwano, Y. Yamamoto, H. Koinuma, and Y. Matsumoto, Appl. Phys. Lett., 89, 242103 (2006). [DOI: https://doi.org/10.1063/1.2404980]   DOI
11 P. C. Yao, J. L. Chiang, and M. C. Lee, Solid State Sci., 28, 47 (2014). [DOI: https://doi.org/10.1016/j.solidstatesciences. 2013.12.011]   DOI
12 K. H. Choi, K. B. Chung, and H. K. Kim, Appl. Phys. Lett., 102, 153511 (2013). [DOI: https://doi.org/10.1063/1.4802717]   DOI
13 N. Zhong, J. J. Cao, H. Shima, and H. Akinaga, IEEE Electron Device Lett., 33, 1009 (2012). [DOI: https://doi.org/10.1109/LED.2012.2193658]   DOI
14 K. H. Choi and H. K. Kim, Electrochem. Solid-State Lett., 14, H314 (2011). [DOI: https://doi.org/10.1149/1.3589983]   DOI
15 J. Kong, J. Lee, Y. Jeong, M. Kim, S. O. Kang, and K. Lee, Appl. Phys. Lett., 100, 213305 (2012). [DOI: https://doi.org/10.1063/1.4722802]   DOI
16 J. W. Park, S. W. Han, N. Jeon, J. Jang, and S. Yoo, IEEE Electron Device Lett., 29, 1319 (2008). [DOI: https://doi.org/10.1109/LED.2008.2005737]   DOI
17 J. K. Jeong, J. H. Jeong, H. W. Yang, J. S. Park, Y. G. Mo, and H. D. Kim, Appl. Phys. Lett., 91, 113505 (2007). [DOI: https://doi.org/10.1063/1.2783961]   DOI