Browse > Article
http://dx.doi.org/10.4313/JKEM.2017.30.2.74

Liquid Phase Sintering and Electrical Properties of ZnO-Zn2BiVO6-Co3O4 Ceramics  

Hong, Youn-Woo (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology)
Kim, You-Bi (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology)
Paik, Jong-Hoo (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology)
Cho, Jeong-Ho (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology)
Jeong, Young-Hun (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology)
Yun, Ji-Sun (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology)
Park, Woon-Ik (Electronic Materials & Component Center, Korea Institute of Ceramic Engineering and Technology)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.30, no.2, 2017 , pp. 74-80 More about this Journal
Abstract
This study focuses on the effects of doping $Zn_2BiVO_6$ and $Co_3O_4$ on the sintering and electrical properties of ZnO; where, ZZ consists of 0.5 mol% $Zn_2BiVO_6$ in ZnO, and ZZCo consists of 1/3 mol% $Co_3O_4$ in ZZ. As ZnO was sintered at about $800^{\circ}C$, the liquid phases, which are composed of $Zn_2BiVO_6$ and $Zn_2BiVO_6$-rich phases, were found to be segregated at the grain boundaries of sintered ZZ and ZZCo, respectively, which demonstrates that $V_o^{\cdot}$(0.33~0.36 eV) are formed as dominant defects according to the analysis of admittance spectroscopy. As $Co_3O_4$ is doped to ZZ, the resistivity of ZnO decreases to ~38%, while donor density ($N_d$), interface state density ($N_t$), and barrier height (${\Phi}_b$) increase twice higher than those of ZZ, according to C-V characteristics. This result harbingers that ZZCo and its derivative compositions will open the gate for ZnO to be applied as more progressive varistors in the future, as well as the advantageous opportunity of manufacturing ZnO chip varistors at lower sintering temperatures below $900^{\circ}C$.
Keywords
ZnO; Varistor; $Zn_2BiVO_6$; $Co_3O_4$; Sintering;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. J. Jagadish and S. J. Pearton, Zinc Oxide Bulk, Thin Films and Nanostructures (Elsevier, Amsterdam, 2006) p. 17.
2 D. R. Clarke, J. Am. Ceram. Soc., 82, 485 (1999). [DOI: https://doi.org/10.1111/j.1151-2916.1999.tb01793.x]
3 T. K. Gupta, J. Am. Ceram. Soc., 73, 1817 (1990). [DOI: https://doi.org/10.1111/j.1151-2916.1990.tb05232.x]   DOI
4 S. Hirose, Y. Yamamoto, and H. Niimi, J. Appl. Phys., 104, 013701 (2008). [DOI: https://doi.org/10.1063/1.2949262]   DOI
5 K. Eda, IEEE Elec. Insulation. Mag., 5, 28 (1989). [DOI: https://doi.org/10.1109/57.44606]
6 R. Einzinger, Ann. Rev. Mater. Sci., 17, 299 (1987). [DOI: https://doi.org/10.1146/annurev.ms.17.080187.001503]   DOI
7 M. Inada and M. Matsuoka, Advances in Ceramics (American Ceramic Society, Columbus, 1984) p. 91.
8 J. Kim, T. K. Kimura, and T. Yamaguchi, J. Am. Ceram. Soc., 72, 1390 (1989). [DOI: https://doi.org/10.1111/j.1151-2916.1989.tb07659.x]   DOI
9 Y. W. Hong, H. S. Shin, D. H. Yeo, and J. H. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 24, 876 (2011).
10 M. Mirzayi and M. H. Hekmatshoar, Physica B, 414, 50 (2013). [DOI: https://doi.org/10.1016/j.physb.2013.01.020]   DOI
11 C. W. Nahm, J. Am. Ceram. Soc., 94, 3227 (2011). [DOI: https://doi.org/10.1111/j.1551-2916.2011.04812.x]   DOI
12 ACerS-NIST Phase Equilibria Diagrams CD-ROM Database Version 3.3, Fig. 13290 $ZnO-Bi_2O_3-V_2O_5$ phase diagram (2010).
13 M. Bosacka, M. Kurzawa, I. R. Himmel, and I. Szkoda, Thermochimica Acta, 428, 51 (2005). [DOI: https://doi.org/10.1016/j.tca.2004.09.025]   DOI
14 F. Greuter and G. Blatter, Semicond. Sci. Technol., 5, 111 (1990). [DOI: https://doi.org/10.1088/0268-1242/5/2/001]   DOI
15 Y. W. Hong, H. S. Shin, D. H. Yeo, and J. H. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 24, 882 (2011).
16 K. Mukae, K. Tsuda, and I. Nagasawa, J. Appl. Phys., 50, 4475 (1979). [DOI: https://doi.org/10.1063/1.326411]   DOI
17 F. Greuter and G. Blatter, Semicond. Sci. Technol., 5, 111 (1990). [DOI: https://doi.org/10.1088/0268-1242/5/2/001]   DOI
18 L. F. Luo, Appl. Phys. Lett., 36, 570 (1980). [DOI: https://doi.org/10.1063/1.91549]   DOI
19 A. Smith, J. F. Baumard, and P. Abelard, J. Appl. Phys., 65, 5119 (1989). [DOI: https://doi.org/10.1063/1.343190]   DOI
20 Y. W. Hong, Y. J. Lee, S. K. Kim, J. H. Paik, and J. H. Kim, Electron. Mater. Lett., 10, 903 (2014). [DOI: https://doi.org/10.1007/s13391-014-3331-3]   DOI
21 L. M. Levinson and H. R. Philipp, J. Appl. Phys., 47, 3116 (1976). [DOI: https://doi.org/10.1063/1.323059]   DOI
22 H. R. Philipp, Materials Science Research, Tailoring Multiphase and Composite Ceramics (eds. R. E. Tressler, G. L. Messing, C. G. Pantano, and R. E. Newnham) (Prenum Press, New York/London, 1987) p. 481.
23 B. S. Chiou and M. C. Chung, J. Electron. Mater., 20, 885 (1991). [DOI: https://doi.org/10.1007/BF02665979]   DOI
24 Y. W. Hong, Y. J. Lee, S. K. Kim, and J. H. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 26, 38 (2013).