Browse > Article
http://dx.doi.org/10.4313/JKEM.2017.30.12.788

The Electrical Behavior of Plasma Sprayed Al2O3-TiO2 Coatings  

Park, Sang-Jun (Engineering Ceramics Center, Korea Institute of Ceramic Technology and Engineering)
Lee, Sung-Min (Engineering Ceramics Center, Korea Institute of Ceramic Technology and Engineering)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.30, no.12, 2017 , pp. 788-793 More about this Journal
Abstract
Electrical behaviors of plasma-sprayed $Al_2O_3-TiO_2$ coatings have been investigated in terms of their $TiO_2$ content. On increasing the $TiO_2$ content from 6 to 30 wt%, the DC electrical conductivity increased by several orders of magnitude. From impedance spectroscopy analysis, the total conductivity of the grains and grain boundaries and their respective activation energies were determined without the electrode effects that could impede ionic transfer. An electron transference number was also estimated, ranging between 6.5% and 7.3% for 13 wt% $TiO_2$ and between 0.4% and 0.7% for 30 wt% $TiO_2$ in the coating. Because of the high electronic contribution to the total conductivity, the $Al_2O_3-TiO_2$ coating could be a new candidate material to obtain superior electrical conductivity as well as corrosion and wear resistances.
Keywords
$Al_2O_3$; $TiO_2$; Electrical conductivity; Plasma sprayed coating;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 E. Klyatskina, L. Espinosa-Fernández, G. Darut, F. Segovia, M. D. Salvador, G. Montavon, and H. Agorges, Tribol. Lett., 59, 7 (2015). [DOI: https://doi.org/10.1007/s11249-015-0530-5]   DOI
2 L. Pawlowski, The Science and Engineering of Thermal Spray Coatings (Wiley, Hoboken, 2008).
3 Th. Lampe, S. Eisenberg, and E. R. Cabeo, Surf. Coat. Technol., 174, 1 (2003). [DOI: https://doi.org/10.1016/S0257-8972(03)00473-0]
4 Y. Wang, S. Jiang, M. Wang, S. Wang, T. D. Xiao, and P. R. Strutt, Wear, 237, 176 (2000). [DOI: https://doi.org/10.1016/S0043-1648(99)00323-3]   DOI
5 L. T. Kabacoff, AMPITAC Newsl., 6, 37 (2002).
6 L. L. Shaw, D. Goberman, R. Ren, M. Gell, S. Jiang, Y. Wang, T. D. Xiao, and P. R. Strutt, Surf. Coat. Technol., 130, 1 (2000). [DOI: https://doi.org/10.1016/S0257-8972(00)00673-3]   DOI
7 M. Wang and L. L. Shaw, Surf. Coat. Technol., 202, 34 (2007). [DOI: https://doi.org/10.1016/j.surfcoat.2007.04.057]   DOI
8 N. B. Dahotre and S. Nayak, Surf. Coat. Technol., 194, 58 (2005). [DOI: https://doi.org/10.1016/j.surfcoat.2004.05.006]   DOI
9 S. K. Jia, Y. Zou, J. Y. Xu, J. Wang, and L. Yu, Trans. Nonferrous Met. Soc. China, 25, 175 (2015). [DOI: https://doi.org/10.1016/S1003-6326(15)63593-2]   DOI
10 V. Somani and S. J. Kalita, J. Am. Ceram. Soc., 90, 2372 (2007). [DOI: https://doi.org/10.1111/j.1551-2916.2007.01797.x]   DOI
11 S. Addepalli, L. G. Kolla, and U. Suda, Mater. Sci. Semicond. Process., 57, 137 (2017). [DOI: https://doi.org/10.1016/j.mssp.2016.10.019]   DOI
12 M. Nakamichi and H. Kawamura, Thermal Spray 2001: New Surfaces for a New Millenium (ASM International, Materials Park, OH, USA, 2001) p. 1039.
13 J. R. Davis, Handbook of Thermal Spray Technology (ASM International, USA, 2004).
14 P. Ctibor, Z. Pala, J. Sedlacek, V. Stengl, I. Pis, T. Zahoranova, and V. Nehasil, J. Therm. Spray Technol., 21, 425 (2012). [DOI: https://doi.org/10.1007/s11666-012-9747-0]   DOI
15 G. M. Ingo, J. Am. Ceram. Soc., 74, 381 (1991). [DOI: https://doi.org/10.1111/j.1151-2916.1991.tb06891.x]   DOI
16 S. J. Park, J. K. Lee, Y. S. Oh, S. Kim, H. Kim, and S. M. Lee, J. Korean Ceram. Soc., 53, 641 (2016). [DOI: https://doi.org/10.4191/kcers.2016.53.6.641]   DOI
17 R.S.S. Maki and Y. Suzuki, J. Ceram. Soc. Jpn., 124, 1 (2016). [DOI: https://doi.org/10.2109/jcersj2.15098]   DOI