Browse > Article
http://dx.doi.org/10.4313/JKEM.2017.30.11.717

Enhancement of Electrical Properties of Organic Light-Emitting Diodes Using F4-TCNQ Molecule as a Hole-Transport Layer  

Na, Su Hwan (Department of Information Display Engineering, Hongik university)
Lee, Won Jae (Department of Electronic Engineering, Gachon university)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.30, no.11, 2017 , pp. 717-721 More about this Journal
Abstract
We studied the performance enhancement of organic light-emitting diodes (OLEDs) using 2,3,5,6-fluoro-7,7,8,8-tetracyanoquinodimethane ($F_4-TCNQ$) as the hole-transport layer. To investigate how $F_4-TCNQ$ affects the device performance, we fabricated a reference device in an ITO (170 nm)/TPD(40 nm)/$Alq_3$(60 nm)/LiF(0.5 nm)/Al(100 nm) structure. Several types of test devices were manufactured by either doping the $F_4-TCNQ$ in the TPD layer or forming a separate $F_4-TCNQ$ layer between the ITO anode and TPD layer. N,N'-diphenyl-N,N'-di(m-tolyl)-benzidine (TPD), tri(8-hydroxyquinoline) aluminum ($Alq_3$), and $F_4-TCNQ$ layers were formed by thermal evaporation at a pressure of $10_{-6}$ torr. The deposition rate was $1.0-1.5{\AA}/s$ for TPD and $Alq_3$. The LiF was subsequently thermally evaporated at a deposition rate of $0.2{\AA}/s$. The performance of the OLEDs was considered with respect to the turn-on voltage, luminance, and current efficiency. It was found that the use of $F_4-TCNQ$ in OLEDs enhances the performance of the device. In particular, the use of a separate layer of $F_4-TCNQ$ realizes better device performance than other types of OLEDs.
Keywords
Organic light-emitting diodes; TCNQ; $F_4-TCNQ$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. W. Tang and S. A. VanSlkye, Appl. Phys. Lett., 51, 913 (1987). [DOI: https://doi.org/10.1063/1.98799]   DOI
2 L. S. Hung, C. W. Tang, and M. G. Mason, Appl. Phys. Lett., 70, 152 (1997). [DOI: https://doi.org/10.1063/1.118344]   DOI
3 L. S. Hung, C. W. Tang, M. G. Mason, P. Raychaudhuri, and J. Madathil, Appl. Phys. Lett., 78, 544 (2001). [DOI: https://doi.org/10.1063/1.1327273]   DOI
4 C. Williams, S. Lee, J. Ferraris, and A. A. Zakhidov, J. Lumin., 110, 396 (2004). [DOI: https://doi.org/10.1016/j.jlumin.2004.08.038]   DOI
5 M. K. Fung, K. M. Lau, S. L. Lai, C. W. Law, M. Y. Chan, C. S. Lee, and S. T. Lee, J. Appl. Phys., 104, 034509 (2008). [DOI: https://doi.org/10.1063/1.2942408]   DOI
6 X. Zhou, J. Blochwitz, M. Pfeiffer, A. Nollau, T. Fritz, and K. Leo, Adv. Funct. Mater., 11, 310 (2001). [DOI: https://doi.org/10.1002/1616-3028(200108)11:4<310::AID-ADFM310>3.0.CO;2-D]   DOI
7 M. A. Khan, W. Xu, Khizar-ul-Haq, Y. Bai, X. Y. Jiang, Z. L. Zhang, and W. Q. Zhu, Semicond. Sci. Technol., 23, 055014 (2008). [DOI: https://doi.org/10.1088/0268-1242/23/5/055014]   DOI