Browse > Article
http://dx.doi.org/10.4313/JKEM.2017.30.11.688

Piezoelectric Characteristics of PZT-Based PZN-PNN-PZT Piezoelectric Devices According to Various Conditions  

Choi, Jeoung Sik (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering and Technology)
Lee, Chang Hyun (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering and Technology)
Shin, Hyo Soon (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering and Technology)
Yeo, Dong Hun (Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering and Technology)
Lee, Joon Hyung (Department of Electronic Materials Science and Engineering, School of Materials Science and Engineering, Kyungpook National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.30, no.11, 2017 , pp. 688-692 More about this Journal
Abstract
$Pb(Zr,\;Ti)O_3$ (PZT) is a piezoelectric material applied in a typical actuator and has been actively studied. However, in order to overcome the limitations of PZT, piezoelectric ceramics comprising mixed solid solutions of PZT with various relaxer electric materials have been studied. The $Pb(Zn_{1/3}Nb_{2/3})-Pb(Ni_{1/3}Nb_{2/3})-Pb(Zr,\;Ti)O_3$ (PZN-PNN-PZT) piezoelectric ceramic, known to have high piezoelectric constant and electromechanical coupling coefficient, was studied herein. The piezoelectric characteristics with various Zr contents (Zr/Ti ratios), PZN molar ratios, and sintering temperatures were compared. The piezoelectric properties of $d_{33}=580pC/N$ and $k_P=0.68$ were obtained with the $0.1PZN-0.2PNN-0.7PbZr_{0.46}Ti_{0.54}O_3$ composition sintered at $1,290^{\circ}C$.
Keywords
PZN-PNN-PZT; Perovskite; Actuator; Piezoeletric;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics (Academic Press, New York, 1971) p. 135.
2 A. S. Mischenko, Q. Zhang, J. F. Scott, R. W. Whatmore, and N. D. Mathur, Science, 311, 1270 (2006). [DOI: https://doi.org/10.1126/science.1123811]   DOI
3 A. J. Moulson and J. M. Herbert, Electroceramics: Materials, Properties, Applications (John Wiley and Sons Ltd., USA, 2003).
4 H. Chen, J. Long, and Z. Meng, Mater. Sci. Eng., B, 99, 433 (2003). [DOI: https://doi.org/10.1016/S0921-5107(02)00448-8]   DOI
5 F. Kahoul, L. Hamzioui, and A. Boutarfaia, Energy Procedia, 50, 87 (2014). [DOI: https://doi.org/10.1016/j.egypro.2014.06.011]   DOI
6 C. Lei, K. Chen, X. Zhang, and J. Wang, Solid State Commun., 123, 445 (2002). [DOI: https://doi.org/10.1016/S0038-1098(02)00371-X]   DOI
7 P. D. Gio and V. D. Dan, J. Alloys Compd., 449, 24 (2008). [DOI: https://doi.org/10.1016/j.jallcom.2006. 02.116]   DOI
8 C. B. Yoon, S. H. Lee, S. M. Lee, and H. E. Kim, J. Eur. Ceram. Soc., 26, 2345 (2006). [DOI: https://doi.org/10.1016/j.jeurceramsoc.2005.04.003]   DOI
9 N. Vittayakorn, G. Rujijanagul, T. Tunkasiri, X. Tan, and D. P. Cann, J. Mater. Res., 18, 2882 (2011). [DOI: https://doi.org/10.1557/JMR.2003.0402]
10 S. Mahajan, O. P. Thakur, and C. Prakash, Defence Science Journal, 57, 23 (2007). [DOI: https://doi.org/10.14429/dsj.57.1724]   DOI