Browse > Article
http://dx.doi.org/10.4313/JKEM.2016.29.12.791

The Effects of TiO2 Addition on the Electrical Insulation of AlN Ceramics with 1 wt% Y2O3  

Lee, Jin-Uk (Engineering Ceramics Center, Korea Institute of Ceramic Technology and Engineering)
Lee, Won-Jin (Engineering Ceramics Center, Korea Institute of Ceramic Technology and Engineering)
Lee, Sung-Min (Engineering Ceramics Center, Korea Institute of Ceramic Technology and Engineering)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.29, no.12, 2016 , pp. 791-795 More about this Journal
Abstract
The effects of $TiO_2$ addition on the electrical insulation of AlN ceramics with 1 wt% $Y_2O_3$ as a sintering aid have been investigated. Some of $TiO_2$ has reacted with AlN powders and transformed to fine TiN particles during sintering, which was uniformly dispersed along grain boundaries of AlN. At a high electrical field (500 V/mm), the resistivity of AlN ceramics with $TiO_2$ addition of 0.2 wt% increased about 1000 times from $3{\times}10^{10}{\Omega}cm$ to $3.1{\times}10^{13}{\Omega}cm$. Based on the impedance spectroscopy measurement, it was found that $TiO_2$ addition increased dramatically electrical resistivity of AlN grains much more than that of grain boundaries. Thus, $TiO_2$ was believed to dissolve inside AlN grains to suppress ionic conduction of Al vacancies. This suppressed ionic conduction by Ti incorporation into AlN grains seems to contribute to more electrically insulating AlN ceramics.
Keywords
AlN; Electrical insulation; $TiO_2$;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 A. V. Virkar, T. B. Jackson, and R. A. Cutler, J. Am. Ceram. Soc., 72, 2031 (1989). [DOI: https:/doi.org/10.1111/j.1151-2916.1989.tb06027.x]   DOI
2 F. Miyashiro, N. Iwase, A. Tsuge, F. Ueno, M. Nakahashi, and T. Takahashi, IEEE Trans. Comp., 13, 313 (1990).
3 K. Watari, H. J. Hwang, M. Toriyama, and S. Kanzaki, J. Mater. Res., 14, 1409 (1999). [DOI: https:/doi.org/10.1557/JMR.1999.0191]   DOI
4 Y. Imanaka, Y. Suzuki, T. Suzuki, K. Hirao, T. Tsuchiya, H. Nagata, and J. S. Cross, Advanced Ceramic Technologies and Products (Springer, Japan, 2012). [DOI: 10.1007/978-4-431-54108-0]
5 H. Nakanto, K. Watari, H. Hayashi, and K. Urabe, J. Am. Ceram. Soc., 85, 3093 (2002). [DOI: https:/doi.org/10.1111/j.1151-2916.2002.tb00587.x]   DOI
6 S. A. Jang and G. M. Choi, J. Am. Ceram. Soc., 75, 3145 (1992). [DOI: https:/doi.org/10.1111/j.1151-2916.1992.tb04402.x]   DOI
7 S. A. Jang and G. M. Choi, J. Am. Ceram. Soc., 76, 957 (1993). [DOI: https:/doi.org/10.1111/j.1151-2916.1993.tb05319.x]   DOI
8 W. J. Lee, S. M. Lee, K. B. Shim, and H. T. Kim, J. Korean. Ceram. Soc., 44, 116 (2007). [DOI: https:/doi.org/10.4191/KCERS.2007.44.2.116]   DOI
9 H. S. Kim, J. M. Chae, Y. S. Oh, H. T. Kim, K. B. Shim, and S. M. Lee, Ceram. Inter., 36, 2039 (2010). [DOI: https:/doi.org/10.1016/j.ceramint.2010.04.001]   DOI
10 G. A. Slack, R. A. Tanzilli, R. O. Pohl, and J. W. Vandersande, J. Phys.Chem Solids., 48, 641 (1987). [DOI: https:/doi.org/10.1016/0022-3697(87)90153-3]   DOI
11 R. D. Shannon, Acta Crystal., A32, 751 (1976). [DOI: https:/doi.org/10.1107/S0567739476001551]   DOI