Browse > Article
http://dx.doi.org/10.4313/JKEM.2016.29.11.702

High Quality Free-Standing GaN Substrate by Using Self-Separation Method  

Son, Ho Ki (Korea Institute of Ceramic Engineering & Technology)
Lee, Young Jin (Korea Institute of Ceramic Engineering & Technology)
Kim, Jin-Ho (Korea Institute of Ceramic Engineering & Technology)
Hwang, Jonghee (Korea Institute of Ceramic Engineering & Technology)
Jeon, Dae-Woo (Korea Institute of Ceramic Engineering & Technology)
Lee, Hae-Yong (LumiGNtech)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.29, no.11, 2016 , pp. 702-706 More about this Journal
Abstract
We demonstrated that self-separation FS-GaN (freestanding-GaN) was grown on MELO (maskless epitaxially lateral overgrowth) GaN template by horizontal HVPE (hydride vapor phase epitaxy). Before thick GaN grwoth, MELO GaN template was grown on patterned GaN template by MOCVD (metal organic chemical vapor deposition). The laterally overgrown GaN would consist of a continuous well coalesced layer. The mixed TDD (threading dislocation density) of seed and wing region were $8{\times}10^8cm^{-2}$ and $7{\times}10^7cm^{-2}$, respectively. After thick GaN grown by HVPE, the self-separation between thick GaN and sapphire substrate was generated at seed region. The regions of self-separation for FS-GaN and sapphire were observed by FE-SEM. Moreover, Raman results indicated that the compressive strain of seed and wing regions at FS-GaN substrate were slightly released compared to that of thick GaN grown on conventional GaN template. The optical properties of the FS-GaN substrate were examined by using PL (photoluminescence). The PL exhibited that donor bound exciton and donor acceptor pair were observed at low temperature. The effects on optical and structural properties of FS-GaN substrate have been discussed in detail.
Keywords
FS-GaN; Self-separation; HVPE; Refractive index;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 M. Balaji, A. Claudel, V. Fellmann, I. Gelard, E. Blanquet, R. Boichot, A. Pierret, B. A. Tretout, A. Crisci, S. Coindeau, H. Roussel, D. Pique, K. Baskar, and M. Pons, J. Alloy Compd., 526, 103 (2012). [DOI: http://dx.doi.org/10.1016/j.jallcom.2012.02.111]   DOI
2 K. Fujita, K. Okuura, H. Miyake, K. Hiramatsu, and H. Hirayama, Phys. Status Solidi C, 8, 1483 (2011). [DOI: http://dx.doi.org/10.1002/pssc.201001130]   DOI
3 H. Hirayama, S. Fujikawa, J. Norimatsu, T. Takano, K. Tsubaki, and N. Kamata, Phys. Status Solidi C, S5, S356 (2009). [DOI: http://dx.doi.org/10.1002/pssc.200880958]
4 T. Nagashima, M. Harada, H. Yanagi, H. Fukuyama, Y. Kumagai, A. Koukitu, and K. Takada, J. Cryst. Growth, 305, 355 (2007). [DOI: http://dx.doi.org/10.1016/j.jcrysgro.2007.04.001]   DOI
5 Y. Kumagai, Y. Enatsu, M. Ishizuki, Y. Kubota, J. Tajima, T. Nagashima, H. Murakami, K. Takada, and A. Koukitu, J. Cryst. Growth, 312, 2530 (2010). [DOI: http://dx.doi.org/10.1016/j.jcrysgro.2010.04.008]   DOI
6 F. Reveret, Y. Andre, O. Gourmala, J. Leymarie, M. Mihailovic, D. Lagarde, E. Gil, D. Castelluci, and A. Trassoudaine, J. Cryst. Growth, 421, 27 (2015). [DOI: http://dx.doi.org/10.1016/j.jcrysgro.2015.03.035]   DOI
7 K. Fujita, K. Okuura, H. Miyake, K. Hiramatsu, and H. Hirayama, Phys. Status Solidi C, 8, 1483 (2011). [DOI: http://dx.doi.org/10.1002/pssc.201001130]   DOI
8 D. J. Park, J. Y. Lee, H. K. Cho, C. H. Hong, and H. S. Cheong, J. Korean Phys. Soc., 45, 1253 (2004).
9 T. Sochacki, Z. Bryan, M. Amilusik, M. Bobea, M. Fijalkowski, I. Bryan, B. Lucznik, R. Collazo, J. L. Weyher, R. Kucharski, I. Grzegory, M. Bockowski, and Z. Sitar, J. Cryst. Growth, 394, 55 (2014). [DOI: http://dx.doi.org/10.1016/j.jcrysgro.2014.02.020]   DOI
10 M. Imanishi, K. Murakami, H. Imabayashi, H. Takazawa, Y. Todoroki, D. Matsuo, M. Mauyama, M. Imade, M. Yoshimura, and Y. Mori, Phys. Status Soidi C, 10, 400 (2013). [DOI: http://dx.doi.org/10.1002/pssc.201200705]   DOI
11 H. K. Son, J. H. Kim, M. J. Lee, T. Y. Lim, H. K. Oh, J. H. Kim, Y. J. Choi, H. Y. Lee, K. B. Shim, and J. H. Hwang, J. Ceram. Pocess. Res., 15, 57 (2014).
12 X. Li, J. Wu, N. Liu, T. Han, X. Kang, T. Yu, and G. Zhang, Mater. Lett., 132, 94 (2014). [DOI: http://dx.doi.org/10.1016/j.matlet.2014.06.068]   DOI
13 B. Lucznik, B. Pastuszka, I. Grzegory, M. Bockowski, G. Kamler, J. Domagala, G. Nowak, P. Prystawko, S. Krukowski, and S. Porowski, Phys. Status Soidi C, 3, 1453 (2006). [DOI: http://dx.doi.org/10.1002/pssc.200565126]   DOI
14 A. A. Porporati, Y. Tanaka, A. Matsutani, W. Zhu, and G. Pezzotti, J. Appl. Phys., 100, 083515 (2006). [DOI: http://dx.doi.org/10.1063/1.2360152]   DOI
15 A. D. Williams and T. D. Moustakas, J. Cryst. Growth, 300, 37 (2007). [DOI: http://dx.doi.org/10.1016/j.jcrysgro.2006.10.224]   DOI
16 T. Paskova, D. Hommel, P. P. Paskov, V. Darakchieva, B. Monemar, M. Bockowski, T. Suski, I. Grzegory, F. Tuomisto, K. Saarinen, N. Ashkenov, and M. Schubert, Appl. Phys. Lett., 88, 141909 (2006). [DOI: http://dx.doi.org/10.1063/1.2192149]   DOI
17 D. G. Zhao, S. J. Xu, M. H. Xie, and S. Y. Tong, Appl. Phys. Lett., 83, 28 (2003).
18 A. P. Vajpeyi, S. J. Chua, S. Tripathy, and E. Fitzgerald, Electrochem. Solid-state. Lett., 8, G85 (2005). [DOI: http://dx.doi.org/10.1149/1.1861037]   DOI
19 B. Monemar, H. Larsson, C. Hemmingsson, I. G. Ivanov, and D. Gogova, J. Cryst. Growth, 281, 17 (2005). [DOI: http://dx.doi.org/10.1016/j.jcrysgro.2005.03.040]   DOI