Browse > Article
http://dx.doi.org/10.4313/JKEM.2016.29.11.671

Research for Controlled Thermal Conductivity of p-Type Skutterudite Materials  

Son, Geon Sik (School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education)
Choi, Soon Mok (School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.29, no.11, 2016 , pp. 671-675 More about this Journal
Abstract
Skutterudite materials show PGEC (phonon glass electron crystal) characteristics which is an optimal strategy for designing high performance thermoelectric materials. Now two methods are in parallel to control thermal conductivity of skutterudites, a rattler-atoms doping method and a process for nanostructured bulk materials. Amount of rattler atoms in p-type skutterudite are depends on a Fe/Co ratio of matrix, and the optimal Fe/Co ratio has been reported about from 3:1 to 3.5:0.5 in $R(Fe,Co)_4Sb_{12}$ structure. In this paper, our discussion for rattler doping research was concentrated on double-rattler systems and DD-doped systems in p-type skutterudites. A melt spinning precess combined with high energy ball milling were suggested as a strategy for nanostructured bulk materials with PGEC (phonon glass electron crystal) characteristics in p-type skutterudites.
Keywords
Thermoelectric materials; PGEC; Nanostructured bulk materials; Rattler;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 K. H. Lee, J. Y. Kim, and S. M. Choi, Journal of the Korean Ceramic Society, 52, 1 (2014).
2 H. J. Goldsmid, CRC Handbook of Thermoelectrics (ed., D. M. Rowe) (CRC Press, USA, 1995) p. 19.
3 Z. G. Chen, Chinese Materials Research Society, 22, 535 (2012).
4 G. S. Nolas, D. T. Morelli, and T. M. Tritt, Annual Review of Materials Science, 29, 94 (1999).
5 G. A. Slack, CRC Handbook of Thermo-electrics (eds. M. Rowe) (CRC Press, USA, 1995).
6 S. I. Kim and K. H. Lee, Science, 348, 109 (2015). [DOI: http://dx.doi.org/10.1126/science.aaa4166]   DOI
7 H. J. Goldsmid and A. W. Penn, Phys. Lett., 27A, 523 (1968). [DOI: http://dx.doi.org/10.1016/0375-9601(68)90898-0]
8 J. R. Sootsman, D. Y. Chung, and M. G. Kanatzidis, International Edition, 48, 8616 (2009). [DOI: http://dx.doi.org/10.1002/anie.200900598]   DOI
9 J. Y. Cho, Acta Materialia, 60, 2104 (2012). [DOI: http://dx.doi.org/10.1016/j.actamat.2011.12.022]   DOI
10 R. Liu, J. Mater. Res., 26, 1813 (2011).   DOI
11 X. F. Tang, J. Mater. Res., 17, 2953 (2002).   DOI
12 G. S. Nolas, Phy. Rev. B, 58, 164 (1998).   DOI
13 C. Zhou, Intermetallics, 19, 1390 (2011). [DOI: http://dx.doi.org/10.1016/j.intermet.2011.04.015]   DOI
14 J. P. Fleurial, Proc. 15th International Conference on Thermoelectrics (California, USA, 1996). [DOI: http://dx.doi.org/10.1109/ict.1996.553263]   DOI
15 R. Liu, Intermetallics, 19, 1747 (2011). [DOI: http://dx.doi.org/10.1016/j.intermet.2011.06.010]   DOI
16 S. Q. Bai, Y. Z. Pei, and L. D. Chen, Acta Materialia, 57, 3135 (2009). [DOI: http://dx.doi.org/10.1016/j.actamat.2009.03.018]   DOI
17 J. Yang, W. Zhang, S. Q. Bai, Z. Mei, and L. D. Chen, Appl. Phys. Lett., 90, 1 (2007).
18 G. Rogl, Intermetallics, 19, 546 (2011). [DOI: http://dx.doi.org/10.1016/j.intermet.2010.12.001]   DOI
19 L. Zhou, Intermetallics, 32, 209 (2013). [DOI: http://dx.doi.org/10.1016/j.intermet.2012.08.005]   DOI
20 G. Rogl, Intermetallics, 18, 57 (2010). [DOI: http://dx.doi.org/10.1016/j.intermet.2009.06.005]   DOI
21 G. Rogl, Acta Materialia, 61, 6778 (2013). [DOI: http://dx.doi.org/10.1016/j.actamat.2013.07.052]   DOI
22 G. Rogl, Intermetallics, 18, 2435 (2010). [DOI: http://dx.doi.org/10.1016/j.intermet.2010.08.041]   DOI
23 J. Yu, J. Electron. Mater., 41, 1414 (2012).   DOI
24 G. Tan, J. Alloy. Compd., 513, 328 (2012). [DOI: http://dx.doi.org/10.1016/j.jallcom.2011.10.042]   DOI
25 G. Rogl, Acta Materialia, 76, 434 (2014). [DOI: http://dx.doi.org/10.1016/j.actamat.2014.05.051]   DOI
26 G. J. Tan, J. Electron. Mater., 41, 434 (2012).
27 C. Zhou, J. Electron. Mater., 41, 1030 (2012).   DOI