Browse > Article
http://dx.doi.org/10.4313/JKEM.2016.29.10.659

Thermal / Electrical Conductivities of Graphites Treated in Aqueous NaOH Solution  

Song, Seung Won (Department of Advanced Materials Engineering, Dong-Eui University)
Min, Eui Hong (Research Center, Solueta Ltd.)
Lee, Dong Won (Research Center, Solueta Ltd.)
Kim, Jungsoo (Dongnam Regional Division, Korea Institute of Industrial Technology)
Nam, Dae-Geun (Dongnam Regional Division, Korea Institute of Industrial Technology)
Oh, Weontae (Department of Advanced Materials Engineering, Dong-Eui University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.29, no.10, 2016 , pp. 659-664 More about this Journal
Abstract
Thermal and electrical conductivities of the natural, artificial, and expandable graphites were analyzed after treatment in NaOH aqueous solution. In order to investigate the elimination of the oxidized groups and impurities on the graphite surfaces after NaOH treatment, the graphite samples were structurally characterized by using XRD, XPS, Raman, FE-SEM. The thermal and electrical conductivities of the graphite samples were significantly improved after NaOH treatment. These results were caused by the structural rehabiliation.
Keywords
Thermal conductivity; Electrical conductivity; Alkali; Graphite;
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. L. Vogel, J. Mater. Sci., 12, 982 (1977). [DOI: http://dx.doi.org/10.1007/BF00540981]   DOI
2 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 306, 666 (2004). [DOI: http://dx.doi.org/10.1126/science.1102896]   DOI
3 W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958). [DOI: http://dx.doi.org/10.1021/ja01539a017]   DOI
4 A. Lerf, H. He, M. Forster, and J. Klinowski, J. Phys. Chem. B, 102, 4477 (1998). [DOI: http://dx.doi.org/10.1021/jp9731821]   DOI
5 S. Stankovich, R. D. Piner, X. Q. Chen, N. Q. Wu, S. T. Nguyen, and R. S. Ruoff, J. Mater. Chem., 16, 155 (2006). [DOI: http://dx.doi.org/10.1039/B512799H]   DOI
6 H. C. Schniepp et al., J. Phys. Chem. B, 110, 8535 (2006). [DOI: http://dx.doi.org/10.1021/jp060936f]
7 G. Eda, G. Fanchini, and M. Chhowalla, Nat. Nanotechnol., 3, 270 (2008). [DOI: http://dx.doi.org/10.1038/nnano.2008.83]   DOI
8 X. Fan, W. Peng, Y. Li, X. Li, S. Wang, G. Zhang, and F. Zhang, Adv. Mater., 20, 4490 (2008). [DOI: http://dx.doi.org/10.1002/adma.200801306]   DOI
9 M. Koo, J. S. Bae, S. E. Shim, D. Kim, D. G. Nam, J. W. Lee, G. W. Lee, J. H. Yeum, and W. Oh, Colloid. Polym. Sci., 289, 1503 (2011). [DOI: http://dx.doi.org/10.1007/s00396-011-2469-x]   DOI
10 L. T. Szabo and O. Berkesi, Carbon., 43, 3186 (2005). [DOI: http://dx.doi.org/10.1016/j.carbon.2005.07.013]   DOI
11 E. Fuente, J. A. Menendez, M. A. Diez, D. Suarez, and M. A. Montes-Moran, J. Phys. Chem. B, 107, 6350 (2003). [DOI: http://dx.doi.org/10.1021/jp027482g]   DOI
12 S. Stankovich, D. A. Dikin, G.H.B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, Nature, 442, 282 (2006). [DOI: http://dx.doi.org/10.1038/nature04969]   DOI
13 P. Liu and K. Gong, Carbon, 37, 701 (1999). [DOI: http://dx.doi.org/10.1016/S0008-6223(99)00036-6]   DOI
14 A. C. Ferrari, Solid. State. Commun., 143, 47 (2007). [DOI: http://dx.doi.org/10.1016/j.ssc.2007.03.052]   DOI
15 S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Carbon, 45, 1558 (2007). [DOI: http://dx.doi.org/10.1016/j.carbon.2007.02.034]   DOI