Browse > Article
http://dx.doi.org/10.4313/JKEM.2016.29.10.620

Structural and Ferroelectric Properties of PZT Thin Films Deposited on SrRuO3 Electrode Films  

Lee, Myung Bok (Department of Industrial Technology Management, Gwangju University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.29, no.10, 2016 , pp. 620-624 More about this Journal
Abstract
Ferroelectric $Pb(Zr_{0.52}Ti_{0.48})O_3$ (PZT) films were deposited on SrTiO3(100) substrate by using conductive $SrRuO_3$ films as underlayer and their structural and ferroelectric properties were investigated. PZT films were grown in (00l) orientation on well lattice-matched pseudo-cubic $SrRuO_3$ films. Thickness dependence of ferroelectric and electrical properties of PZT films was investigated. PZT film with 400 nm thickness showed a remanent polarization ($P_r$) of $29.0{\mu}C/cm^2$ and coercive field ($E_c$) of 83 kV/cm, and $P_r$ decreased and $E_c$ increased with thickness reduction. The dielectric constant for PZT films showed gradual decrease with thickness reduction. Breakdown field of PZT films did not show the thickness dependence and displayed as high value as 1 MV/cm.
Keywords
Ferroelectric oxide; $Pb(Zr_{0.52}Ti_{0.48})O_3$; Pulsed laser deposition; Remanent polarization; Coercive field;
Citations & Related Records
연도 인용수 순위
  • Reference
1 N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N. Y. Park, G. B. Stephenson, I. Stolitchnov, A. K. Taganstev, D. V. Taylor, T. Yamada, and S. Streiffer, J. Appl. Phys., 100, 051606 (2006). [DOI: http://dx.doi.org/10.1063/1.2336999]   DOI
2 H. Ishiwara, J. Nanosci. Nanotechnol., 12, 7619 (2012). [DOI: http://dx.doi.org/10.1166/jnn.2012.6651]   DOI
3 M. Dawber and J. F. Scott, Appl. Phys. Lett., 76, 1060 (2000). [DOI: http://dx.doi.org/10.1063/1.125938]   DOI
4 G. Asano, H. Morioka, H. Funakubo, T. Shibutami, and N. Oshima, Appl. Phys. Lett., 83, 5506 (2003). [DOI: http://dx.doi.org/10.1063/1.1635964]   DOI
5 J. H. Kim, K. S. Koh, and W. K. Choo, J. Kor. Phys. Soc., 42, 1313 (2003). [DOI: http://dx.doi.org/10.3938/jkps. 42.1313]
6 C. Guerrero, J. Roldan, C. Ferrater, M. V. Garcia-Cuenca, F. Sanchez, and M. Varela, Solid-State Electron., 45, 1433 (2001). [DOI:http://dx.doi.org/10.1016/S0038-1101(00)0275 -6]   DOI
7 Q. Zhang and R. W. Whatmore, J. Appl. Phys., 94, 5228 (2003). [DOI: http://dx.doi.org/10.1063/1.1613370]   DOI
8 C. A. Araujo, J. D. Cuhairo, L. D. McMillan, M. C. Scott, and J. F. Scott, Nature, 374, 627 (1994). [DOI: http://dx.doi.org/10.1038/374627a0]
9 P. C. Joshi and S. B. Krupanidhi, Appl. Phys. Lett., 62, 1928 (1993). [DOI: http://dx.doi.org/10.1063/1.109547]   DOI
10 K. Ishikawa, K. Yoshikawa, and K. Okada, Phys. Rev. B, 37, 5852 (1988). [DOI: http://dx.doi.org/10.1103/PhysRevB.37.5852]   DOI
11 C. B. Eom, R. J. Cava, R. M. Fleming, J. M. Phillips, R. B. van Dover, J. H. Marshall, J.W.P. Hsu, J. J. Krajewski, and W. F. Peck, Jr., Science, 258, 1766 (1992). [DOI: http://dx.doi.org/10.1126/science.258.5089.1766]   DOI
12 C. W. Jones, P. D. Battle, P. Lightfoot, and W.T.A. Harrison, Acta. Cryst., C45, 365 (1989). [DOI: http://dx.doi.org/10.1107/S0108270188012077]
13 J. F. Scott, L. Kammerdiner, M. Parris, S. Traynor, V. Ottenbacher, A. Shawabkeh, and W. F. Oliver, J. Appl. Phys., 64, 787 (1988). [DOI: http://dx.doi.org/10.1063/1. 341925]   DOI
14 H. F. Kay and J. W. Dunn, Philos. Mag., 7, 2027 (1962). [DOI: http://dx.doi.org/10.1080/14786436208214471]   DOI