Browse > Article
http://dx.doi.org/10.4313/JKEM.2015.28.10.665

A Comparison of Methods to Remove the Boron Rich Layer Formed at Boron Doping Process for c-Si Solar Cell Applications  

Choi, Ju Yeon (Department of Energy Science and Technology, Graduate School of Energy Science and Technology, Chungnam National University)
Cho, Young Joon (Department of Energy Science and Technology, Graduate School of Energy Science and Technology, Chungnam National University)
Chang, Hyo Sik (Department of Energy Science and Technology, Graduate School of Energy Science and Technology, Chungnam National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.28, no.10, 2015 , pp. 665-669 More about this Journal
Abstract
We investigated and compared two methods of in-situ oxidation and chemical etching treatment (CET) to remove the boron rich layer (BRL). The BRL is generally formed during boron doping process. It has to be controlled in order not to degrade carrier lifetime and reduce electrical properties. A boron emitter is formed using $BBr_3$ liquid source at $930^{\circ}C$. After that, in-situ oxidation was followed by injecting oxygen of 1,000 sccm into the furnace during ramp down step and compared with CET using a mixture of acid solution for a short time. Then, we analyzed passivation effect by depositing $Al_2O_3$. The results gave a carrier lifetime of $110.9{\mu}s$, an open-circuit voltage ($V_{oc}$) of 635 mV at in-situ oxidation and a carrier lifetime of $188.5{\mu}s$, an $V_{oc}$ of 650 mV at CET. As a result, CET shows better properties than in-situ oxidation because of removing BRL uniformly.
Keywords
Boron tribromid ($BBr_3$); Boron rich layer (BRL); In-situ oxidation; Chemical etching treatment (CET);
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 K. S. Ryu, A. Upadhyaya, H. J. Song, C. J. Choi, A. Rohatgi, and Y. W. Ok, Appl. Phys. Lett., 101, 073902 (2012). [DOI: http://dx.doi.org/10.1063/1.4746424]   DOI
2 K. Bothe, R. Sinton, and J. Schmidt, Prog. Photovolt. Res. Appl., 13, 287 (2005). [DOI: http://dx.doi.org/10.1002/pip.586]   DOI
3 K. S. Ryu and S. J. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 26, 18 (2013).
4 S. P. Phang, W. Liang, B. Wolpensinger, M. A. Kessler, and D. Macdonald, IEEE J. Photoboltaics, 3, (2013).
5 S. J. Choi, J. I. Lee, M. G. Kang, D. H. Kim, H. E. Song, The Korea Socity for Energy Engineering, 159 (2014).
6 S. J . Kwon, Thesis, p. 81, Chonbuk University, Jeonju (2013).
7 C. S. Kim, S. E. Park, Y. D. Kim, H. M. Park, S. T. Kim, H. H. Kim, H. S. Lee, and D. H. Kim, Thin Solid Films, 564, 253 (2014). [DOI: http://dx.doi.org/10.1016/j.tsf.2014.05.038]   DOI
8 M. A. Kessler, T. Ohrdes, B. Wolpensinger, and N. P. Harder, Simecond. Sci. Technol., 25, 9 (2010).
9 Y. J. Cho and H. S. Chang, Met. Mater. Int., 19, 1377 (2013). [DOI: http://dx.doi.org/10.1007/s12540-013-6035-6]   DOI
10 S. Duttagupta, F. Lin, K. D. Shetty, A. G. Aberle, and B. Hoex, Prog. Photovolt: Rea. Appl., 21, 760 (2013).
11 Y. W. Ok, A. D. Upadhyaya, Y. Tao, F. Zimbardi, K. S. Ryu, M. H. Kang, and A. Rohatgi, Sol. Energ. Matater. Sol. Cells, 123, 92 (2014). [DOI: http://dx.doi.org/10.1016/j.solmat.2014.01.002]   DOI