Browse > Article
http://dx.doi.org/10.4313/JKEM.2014.27.8.486

Post Annealing Effect on the Characteristics of Al2O3 Thin Films Deposited by Aerosol Deposition on 4H-SiC  

Yu, Susanna (Department of Electronic Materials Engineering, Kwangwoon University)
Kang, Min-Seok (Department of Electronic Materials Engineering, Kwangwoon University)
Kim, Hong-Ki (Department of Electronic Materials Engineering, Kwangwoon University)
Lee, Young-Hie (Department of Electronic Materials Engineering, Kwangwoon University)
Koo, Sang-Mo (Department of Electronic Materials Engineering, Kwangwoon University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.27, no.8, 2014 , pp. 486-490 More about this Journal
Abstract
$Al_2O_3$ films on silicon carbide were fabricated by Aerosol deposition with annealing temperature at $800^{\circ}C$ and $1,000^{\circ}C$. The effect of thermal treatment on physical properties of $Al_2O_3$ thin films has been investigated by XRD (X-ray diffraction), AFM (atomic force microscope), SEM (scanning electron microscope), and AES (auger electron spectroscopy). Also electrical properties have been investigated by Keithley 4,200 semiconductor parameter analyzer to explain the interface trapped charge density ($D_{it}$), flatband voltage ($V_{FB}$) and leakage current ($I_o$). $Al_2O_3$ films become crystallized with increasing temperature by calculating full width at half maximum (FWHM) of diffraction peaks, also surface morphology is observed by topography measurement in non-contact mode AFM. $D_{it}$ was $2.26{\times}10^{-12}eV^{-1}.cm^{-2}$ at $800^{\circ}C$ annealed sample, which is the lowest value in all samples. Also the sample annealed at $800^{\circ}C$ has the lowest leakage current of $4.89{\times}10^{-13}A$.
Keywords
4H-SiC; $Al_2O_3$; Aerosol deposition; Post annealing effect;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 D. W. Lee, H. J. Kim, Y. H. Kim, Y. H. Yun, and S. M. Nam, J. Amer. Ceram. Soc., 94, 3131 (2011).   DOI   ScienceOn
2 A. L. Patterson, Phys. Rev., 56, 978 (1939).   DOI
3 C. K. Yew, J. H. Moon, D. Eom, H. J. Kim, W. Ahng, and N. K. Kim, ESL, 10, H69-H71 (2007).
4 D. K. Schroder, Semiconductor Material and Device Characterization (John Wiley & Sons, New York, 1998).
5 H. MorKoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, J. Appl. Phys., 76, 1363 (1994).   DOI   ScienceOn
6 Y. Sato, Y. Uemichi, K. Nishikawa, and S. Yoshikado, J. Ceram. Soc. Jpn., 18, 092056 (2011).
7 J. Akedo, J. Am. Ceram. Soc., 89, 1834 (2006).   DOI   ScienceOn
8 Y. Y. Wang, H. J. Shen, Y. Bai, Y. D. Tang, K. A. Liu, C. Z. Li, and X. Y. Liu, Chin. Phys. B, 22, 078102 (2013).   DOI   ScienceOn
9 J. C. Park, Y. J, Yoon, H. T. Kim, E. H. Koo, S. M. Nam, J. H. Kim, and K, B. Shim, Journal of the J. Kor. Ceram. Soc., 45, 411 (2008).   DOI
10 C. M. Tanner, P. Ya-Chuan, C. Frewin, S. E. Saddow, and J. P. Chang, Appl. Phys. Lett., 91, 203510 (2007).   DOI   ScienceOn
11 T. W. Na, J. M. Kim, M. K. Kim, and H. J. Kim, J. Kor. Phys. Soc., 59, 452 (2011).   DOI   ScienceOn
12 P. Masri, Surf. Sci. Rep., 48, 1.-SIC (2002).   DOI   ScienceOn