Browse > Article
http://dx.doi.org/10.4313/JKEM.2014.27.4.238

Characteristics of Partial Discharge Under HVDC in SF6 Gas  

Kim, Min-Su (Division of Electrical and Electronics Engineering, Korea Maritime and Ocean University)
Kim, Sun-Jae (Division of Electrical and Electronics Engineering, Korea Maritime and Ocean University)
Jeong, Gi-Woo (Division of Electrical and Electronics Engineering, Korea Maritime and Ocean University)
Jo, Hyang-Eun (Division of Electrical and Electronics Engineering, Korea Maritime and Ocean University)
Kil, Gyung-Suk (Division of Electrical and Electronics Engineering, Korea Maritime and Ocean University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.27, no.4, 2014 , pp. 238-243 More about this Journal
Abstract
This paper dealt with the measurement and analysis of partial discharge (PD) under high voltage direct current (HVDC) in SF6 gas. Electrode systems such as a protrusion on conductor (POC), a protrusion on enclosure (POE), a crack on epoxy plate and a free particle (FP) were fabricated to simulate the insulation defects. The analysis system was designed with a Time-Frequency (T-F) map algorithm programed based on LabVIEW. This can arrange the acquired PD pulses into frequency and time domain. A HVDC power source is composed of a transformer (220 V/50 kV), a diode (100 kV) and a capacitor (50 kV, 0.5 ${\mu}F$). The gap between the electrodes is 3 mm, and the $SF_6$ gas was set at 5 bar. PD pulses were detected by a 50 ${\Omega}$ non-inductive resistor. In the analysis, PD pulses were distributed below 0.5 MHz and 20 ns ~ 35 ns for the POC, 0.7 MHz ~ 1.7 MHz, below 0.6 MHz and 10 ns ~ 40 ns and 60 ns ~125 ns for the POE, below 0.1 MHz and 135 ns ~ 215 ns for the crack, and below 1.6 MHz and 250 ns for the FP.
Keywords
Partial discharge (PD); High voltage direct current (HVDC); SF6 gas; T-F map; Electrode systems;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 H. Q. Niu, A. Cavallini, and G. C. Montanari, Proc. IEEE Int. Symp. on Electrical Insulation, 373 (2008).
2 R. Sarathi and G Koperundevi, IEEE Trans. Dielectr. Electr. Insul., 15, 1724 (2008).   DOI
3 U. Schicher, M. Kuschel, and J. Gorablenkow, Proc. Int. Symp. on High Voltage Engineering, 136 (2013).
4 S. Meijer, P. D. Agoris, J. J. Smit, M. D. Judd, and L. Yang, Proc. Int. Symp. on Electrical Insulation, 416 (2006).
5 M. H. Yun and K. S. Kim, Proc. the KIEE (World of Electricity) (KIEE, Seoul, Korea, 2014) p. 52.
6 R. Sarathi, A. V. Giridhar, and K. Sethupathi, IEEE Trans. Dielectr. Electr. Insul., 18, 707 (2011).   DOI
7 A. Contin, G. C. Montanari, and A. Cavallini, IEEE Trans. Dielectr. Electr. Insul., 7, 30 (2000).   DOI   ScienceOn
8 J. J. Park, S. Y. Lee, and D. C. Mun, J. KIEEME, 19, 942 (2006).
9 A. J. Reid, M. D. Judd, R. A. Fouracre, B. G. Stewart, and D. M. Hepburn, IEEE Trans. Dielectr. Electr. Insul., 18, 444 (2011).   DOI
10 G. S. Kil, I. K. Kim, D. W. Park, S. Y. Choi, and C. Y. Park, Current Appl. Phys., 9, 296 (2009).   DOI
11 A. Contin, A. Cavallini, G. C. Montanari, G. Pasini, and F. Puletti, IEEE Trans. Dielectr. Electr. Insul., 9, 335 (2002).   DOI   ScienceOn
12 H. K. Cha, J. Y. Lee, D. W. Park, and G. S. Kil, J. KIEEME, 25, 229 (2012).
13 A. Cavallini, G. C. Montanari, F. Puletti, and A. Contin, IEEE Trans. Dielectr. Electr. Insul., 12, 203 (2005).   DOI   ScienceOn