Browse > Article
http://dx.doi.org/10.4313/JKEM.2014.27.2.81

Improved Uniformity of Resistive Switching Characteristics in Ag/HfO2/Pt ReRAM Device by Microwave Irradiation Treatment  

Kim, Jang-Han (Department of Electrical Materials Engineering, Kwangwoon University)
Nam, Ki-Hyun (Department of Electrical Materials Engineering, Kwangwoon University)
Chung, Hong-Bay (Department of Electrical Materials Engineering, Kwangwoon University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.27, no.2, 2014 , pp. 81-84 More about this Journal
Abstract
The bipolar resistive switching characteristics of resistive random access memory (ReRAM) based on $HfO_2$ thin films have been demonstrated by using Ag/$HfO_2$/Pt structured ReRAM device. MIcrowave irradiation (MWI) treatment at low temperature was employed in device fabrication with $HfO_2$ thin films as a transition layer. Compared to the as-deposited Ag/$HfO_2$/Pt device, highly improved uniformity characteristics of resistance values and operating voltages were obtained from the MWI treatment Ag/$HfO_2$/Pt ReRAM device. In addition, a stable DC endurance (> 100 cycles) and a high data retention (> $10^4$ sec) were achieved.
Keywords
ReRAM; Resistance switching; $HfO_2$;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. Peng, F. Zhuge, X. Chen, X. Zhu, and B. Hu, Appl. Phys. Lett., 100, 072101 (2012).   DOI
2 M. Kund., G. Beitel, C. U. Pinnow, T. Rohr, J. Schumann, R. Symanczyk, K. D. Ufert, and G. Muller, IEDM Tech. Dig., 773 (2005).
3 U. Russo, D. Kamalanathan, D. Ielmini, A. L. Lacaita, and M. N. Kozicki, IEEE Trans. Electron Dev. Lett., 56, 1040 (2009).   DOI   ScienceOn
4 C. Schindler, S.C.P. Thermandam, R. Waser, and M. N. Kozicki, IEEE Trans. Electron Dev. Lett., 54, 2762 (2007).   DOI   ScienceOn
5 S. Z. Rahaman, S. Maikap, W. S. Chen, H. Y. Lee, F. T. Chen, M. J. Kao, and M. J. Tsai, Appl. Phys. Lett., 101, 092100 (2012).
6 T. Nagata, M. Haemori, Y. Yamashita, H. Yoshikawa, Y. Iwashita, K. Kobayashi, and T. Chikyow, Appl. Phys. Lett., 99, 223517 (2011).   DOI
7 K. Terabe, T. Hasegawa, T. Nakayama, and M. Aono, Nature, 433, 47 (2005).   DOI   ScienceOn
8 J. R. Jameson, N. Gilbert, F. Koushan, J. Saenz, J. Wang, S. Hollmer, and M. N. Kozicki, Appl. Phys. Lett., 99, 063506 (2011).   DOI
9 J. H. Kim, K. H. Nam, and H. B. Chung, J. KIEEME, 25, 182 (2012).
10 S. Z. Rahaman, S. Maikap, T. C. Tien, H. Y. Lee, W. S. Chen, F. Chen, M. J. Kao, and M. J. Tsai, Nanoscale Res. Lett., 7, 345 (2012).   DOI
11 C. Park, S. H. Jeon, S. C. Chae, S. Han, B. H. Park, S. Seo, and D. W. Kim, Appl. Phys. Lett., 93, 042102 (2008).   DOI   ScienceOn
12 J. W. Park, K. Jung, M. H. Yang, and J. K. Lee, J. Vac. Sci. Techno. B, 24, 220 (2006).
13 J. Yoon, H. Choi, D. Lee, J. B. Park, J. Lee, D. J. Seong, Y. Ju, M. Chang, S. Jung, and H. Hwang, IEEE Trans. Electron Dev. Lett., 30, 457 (2009).   DOI   ScienceOn
14 P. T. Liu, L. W. Chu, L. F. Teng, Y. S. Fan, and C. S. Fuh, ECS Transactions, 50, 257 (2012).
15 Q. Liu, S. Long, H. Lv, W. Wang, J. Niu, Z. Huo, J. Chen, and M. Liu, ACS Nano., 4, 6162 (2010).   DOI
16 Y. Wang, Q. Liu, S. Long, W. Wang, Q. Wang, M. Zhang, S. Zhang, Y. Li, Q. Zuo, J. Yang, and M. Liu, Nanotechnology, 21, 045202 (2010).   DOI